Formas de fósforo e labilidade da matéria orgânica durante a biodegradação anaeróbia do dejeto suíno
DOI:
https://doi.org/10.5433/1679-0359.2019v40n5Supl1p2107Palavras-chave:
Fertilizante orgânico, Biodisponibilidade de nutrientes, Biogas.Resumo
O entendimento da dinâmica da matéria orgânica e dos nutrientes no dejeto suíno submetido à biodegradação anaeróbia é importante por auxiliar nas tomadas de decisão para a utilização do biofertilizante anaeróbio como fertilizante agrícola. Nesse sentido, desenvolveu-se um estudo, utilizando reatores anaeróbios de bancada, com o objetivo de avaliar as mudanças na matéria orgânica, através da quantificação do carbono nas frações húmicas e oxidáveis, e nas formas orgânicas e inorgânicas de fósforo da fração sólida do dejeto suíno, em função do tempo de biodegradação. Realizaram-se avaliações nos seguintes tempos de retenção hidráulica: 7, 14, 21, 28, 35, 42 e 49 dias de biodegradação e os resultados comparados com o dejeto não degradado. As mudanças na matéria orgânica ocorreram em suas frações mais lábeis (C-ácido fúlvico e fração F1) com redução dos seus conteúdos, favorecendo o acúmulo de frações mais recalcitrantes no biofertilizante final (C-ácido húmico e frações F2, F3 e F4). O conteúdo total de P não sofreu mudanças ao longo do processo. No entanto, a fração inorgânica de P extraível em água reduziu em 16,7 % após 49 dias de biodegradação, sendo consumida pela microbiota decompositora para a formação de matéria orgânica estabilizada, que se acumula, juntamente com as frações mais recalcitrantes de P no biofertilizante final. O uso do biofertilizante anaeróbio suíno possui, portanto, menor risco de contaminação ambiental pelo excesso de P do que a aplicação direta do dejeto in natura no solo.Métricas
Referências
BENITES, V. M.; MADARI, B.; MACHADO, P. L. O. A. Extração e fracionamento quantitativo de substâncias húmicas do solo: um procedimento simplificado de baixo custo. Rio de Janeiro: EMBRAPA Solos, 2003. 7 p. (Comunicado técnico, 16).
CHAN, K. Y.; BOWMAN, A.; OATES, A. Oxidizible organic carbon fractions and soil quality changes in an oxic paleustalf under different pasture leys. Soil Science, Philadelphia, v. 166, n. 1, p. 61-67, 2001. DOI: 10.1097/00010694-200101000-00009
FIGUEREDO FILHO, D. B.; SILVA JUNIOR, J. A. Visão além do alcance: uma introdução a análise fatorial. Opinião Pública, Campinas, v. 16, n. 1, p. 160-185, 2010. DOI: 10.1590/S0104-62762010000100007
FONGARO, G.; GARCIA-GONZALEZ, M. C.; HERNANDEZ, M.; KUNZ, A.; BARARDI, C. R. M.; RODRIGUEZ-LAZARO, D. Different behavior of enteric bacteria and viruses in clay soils after biofertilization with swine digestate. Frontiers in Microbiology, Lausanne, v. 8, n. 74, p. 1-9, 2017. DOI: 10.3389/fmicb.2017.00074
GARCIA-ALBACETE, M.; MARTIN, A.; CARTAGENA, C. Fractionation of phosphorus biowastes: Characterization and environmental risk. Waste Management, New York, v. 32, n. 6, p. 1061-1068, 2012. DOI: 10.1016/j.wasman.2012.02.003
GUNGOR, K.; KARTHIKEYAN, K. G. Phosphorus forms and extractability in dairy manure: a case study for Wisconsin on-farm anaerobic digesters. Bioresourse Technology, New York, v. 99, n. 2, p. 425-436, 2008. DOI: 10.1016/j.biortech.2006.11.049
HANSEN, K. H.; ALGELIDAKI, I.; AHRING, B. K. Anaerobic digestion of swine manure: inhibition by ammonia, Water Research, London, v. 32, n. 1, p. 5-12, 1998. DOI: 10.1016/S0043-1354(97)00201-7
LI, G.; LI, H.; LEFFELAAR, P. A.; SHEN, J.; ZHANG, F. Characterization of phosphorus in animal manures collected from three (dairy, swine, and broiler) farms in China. Plos One, California, v. 9, n. 7, p. 1-8, 2014. DOI: 10.1371/journal.pone.0102698
MARCATO, C. E.; MOHTAR, R.; REVEL, J. C.; POUECH, P.; HAFIDI, M.; GUIRESSE, M. Impact of anaerobic digestion on organic matter quality in pig slurry. International Biodeterioration and Biodegradation, London, v. 63, n. 7, p. 260-266, 2009. DOI: 10.1016/j.ibiod.2008.10.001
MARCATO, C. E.; PINELLI, E.; POUECH, P.; WINTERTON, P.; GUIRESSE, M. Particle size and metal distributions in anaerobilically digested pig slurry. Bioresourse Technology, New York, v. 99, n. 7, p. 2340-2348, 2008. DOI: 10.1016/j.biortech.2007.05.013
MASSÉ, D. I.; CROTEAU, F.; MASSE, L. The fate of crop nutrients during digestion of swine manure in psychrophilic anaerobic sequencing batch reactors. Bioresource Technology, New York, v. 98, n. 15, p. 2819-2823, 2007. DOI: 10.1016/j.biortech.2006.07.040
MOLLER, K.; MULLER, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Engineering in Life Science, Amsterdam, v. 12, n. 3, p. 242-257, 2012. DOI: 10.1002/elsc.201100085
MURPHY, J.; RILEY, J. P. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, New York, v. 27, n. 1, p. 31-36, 1962. DOI: 10.1016/S0003-2670(00)88444-5
ORRICO JUNIOR, M. A. P.; ORRICO, A. C. A.; LUCAS JUNIOR, J.; SAMPAIO, A. A. M.; FERNANDES, A. R. M.; OLIVEIRA, E. A. Biodigestão anaeróbia dos dejetos da bovinocultura de corte: influência do período, do genótipo e da dieta. Revista Brasileira de Zootecnia, Viçosa, MG, v. 41, n. 6, p. 1533-1538, 2012. DOI: 10.1590/S1516-35982012000600030
PHILIPPE, F. X.; NICKS, B. Review on greenhouse gas emissions from pig houses: production of carbon dioxide, methane and nitrous oxide by animals and manure. Agriculture, Ecosystems and Environment, Amsterdam, v. 199, n. 2, p. 10-25, 2015. DOI: 10.1016/j.agee.2014.08.015
PROVENZANO, M. R.; MALERBA, A. D.; PEZZOLLA, D.; GIGLIOTTI, G. Chemical and spectroscopic characterization of organic matter during the anaerobic digestion and successive composting of pig slurry. Waste Management, New York, v. 34, n. 7, p. 653-660, 2014. DOI: 10.1016/j.wasman.2013.12.001
RAJAGOPAL, R.; MASSE, D. I.; SINGH, G. A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresource Technology, New York, v. 143, n. 1, p. 632-641, 2013. DOI: 10.1016/j.biortech.2013.06.030
RODRIGUEZ-NAVAS, C.; BJORKLUND, E.; HALLING-SORENSEN, B.; HANSEN, M. Biogas final digestive byproduct applied to croplands as fertilizer contains high levels of steroid hormones. Environmental Pollution, London, v. 180, n. 48, p. 368-371, 2013. DOI: 10.1016/j.envpol.2013.05.011
SANCHEZ-MONEDERO, M. A.; ROIG, A.; MARTINEZ-PARDO, C.; CEGARRA, J.; PAREDES, C. A microanalysis method for determining total organic carbon in extracts of humic substances. Relationships between total organic carbon and oxidable carbon. Bioresource Technology, New York, v. 57, n. 3, p. 291-295, 1996. DOI: 10.1016/S0960-8524(96)00078-8
SILVA, F. A. S.; AZEVEDO, C. A. V. Versão do programa computacional Assistat para o sistema operacional Windows. Revista Brasileira de Produtos Agroindustriais, Campina Grande, v. 4, n. 1, p. 71-78, 2002.
SONG, K.; XUE, Y.; ZHENG, X.; LV, W.; QIAO, H.; QIN, Q.; YANG, J. Effects of the continuous use of organic manure and chemical fertilizer on soil inorganic phosphorus fractions in calcareous soil. Scientific Reports, New York, v. 1164, n. 7, p. 1-9, 2017. DOI: 10.1038/s41598-017-01232-2
SZOGI, A. A.; VANOTTI, M. A.; RO, K. S. Methods for treatment of animal manures to reduce nutrient Pollution prior to soil application. Current Pollution Reports, London, v. 1, n. 1, p. 47-56, 2015. DOI: 10.1007/s40726-015-0005-1
TAKAHASHI, S. Phosphorus characterization of manure composts and combined organic fertilizers by a sequential-fractionation method. Journal of Soil Science and Plant Nutrition, Temocu, v. 176, n. 1, p. 494-496, 2013. DOI: 10.1002/jpln.201200169
TAMBONE, F.; ADANI, F.; GIGLIOTTI, G.; VOLPE, D.; FABBRI, C.; PROVENZANO, M. R. Organic matter characterization during the anaerobic digestion of different biomass by means of CPMAS 13C NMR spectroscopy. Biomass and Bioenergy, Virginia, v. 48, n. 13, p. 111-120, 2013. DOI: 10.1016/j.biombioe.2012.11.006
TEDESCO, J. M.; GIANELLO, C.; BISSANI, C. A.; BOHNEN, H.; VOLKWEISS, S. J. Análises de solo, plantas e outros materiais. 2. ed. Porto Alegre: UFRGS, 1995. 174 p. (Boletim técnico, 5).
TIECHER, T.; ZAFAR, M.; MALLMANN, F. J. K.; BORTOLUZZI, E. C.; BENDER, M. A.; CIOTTI, L. H.; SANTOS, D. R. Animal manure phosphorus characterization by sequential chemical fractionation, release kinetics and 31P-NMR analysis. Revista Brasileira de Ciência do Solo, Viçosa, MG, v. 38, n. 5, p. 1506-1514, 2014. DOI: 10.1590/S0100-06832014000500016
TORRI, S. I.; CORREA, R. S.; RENELLA, G. Biosolid application to agricultural land - a contribution to global phosphorus recycle: a review. Pedosphere, Beijing, v. 27, n. 1, p. 1-16, 2017. DOI: 10.1016/S1002-0160(15)60106-0
WALKLEY, A.; BLACK, A. An examination of the degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, New York, v. 37, n. 1, p. 29-38, 1934. DOI: 10.1097/00010694-193401000-00003
YEOMANS, J. C.; BREMNER, J. M. A rapid and precise method for routine determination of organic carbonic in soil. Comunicata Soil Science Plant Analisys, New York, v. 19, n. 13, p. 1476-1476, 1988. DOI: 10.1080/00103628809368027
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2019 Semina: Ciências Agrárias

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Os Direitos Autorais para artigos publicados são de direito da revista. Em virtude da aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais e não-comerciais.
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores.
Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário. Nesses casos, os artigos, depois de adequados, deverão ser submetidos a nova apreciação.
As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.