Formas de fósforo e labilidade da matéria orgânica durante a biodegradação anaeróbia do dejeto suíno
DOI:
https://doi.org/10.5433/1679-0359.2019v40n5Supl1p2107Palavras-chave:
Fertilizante orgânico, Biodisponibilidade de nutrientes, Biogas.Resumo
O entendimento da dinâmica da matéria orgânica e dos nutrientes no dejeto suíno submetido à biodegradação anaeróbia é importante por auxiliar nas tomadas de decisão para a utilização do biofertilizante anaeróbio como fertilizante agrícola. Nesse sentido, desenvolveu-se um estudo, utilizando reatores anaeróbios de bancada, com o objetivo de avaliar as mudanças na matéria orgânica, através da quantificação do carbono nas frações húmicas e oxidáveis, e nas formas orgânicas e inorgânicas de fósforo da fração sólida do dejeto suíno, em função do tempo de biodegradação. Realizaram-se avaliações nos seguintes tempos de retenção hidráulica: 7, 14, 21, 28, 35, 42 e 49 dias de biodegradação e os resultados comparados com o dejeto não degradado. As mudanças na matéria orgânica ocorreram em suas frações mais lábeis (C-ácido fúlvico e fração F1) com redução dos seus conteúdos, favorecendo o acúmulo de frações mais recalcitrantes no biofertilizante final (C-ácido húmico e frações F2, F3 e F4). O conteúdo total de P não sofreu mudanças ao longo do processo. No entanto, a fração inorgânica de P extraível em água reduziu em 16,7 % após 49 dias de biodegradação, sendo consumida pela microbiota decompositora para a formação de matéria orgânica estabilizada, que se acumula, juntamente com as frações mais recalcitrantes de P no biofertilizante final. O uso do biofertilizante anaeróbio suíno possui, portanto, menor risco de contaminação ambiental pelo excesso de P do que a aplicação direta do dejeto in natura no solo.Downloads
Referências
BENITES, V. M.; MADARI, B.; MACHADO, P. L. O. A. Extração e fracionamento quantitativo de substâncias húmicas do solo: um procedimento simplificado de baixo custo. Rio de Janeiro: EMBRAPA Solos, 2003. 7 p. (Comunicado técnico, 16).
CHAN, K. Y.; BOWMAN, A.; OATES, A. Oxidizible organic carbon fractions and soil quality changes in an oxic paleustalf under different pasture leys. Soil Science, Philadelphia, v. 166, n. 1, p. 61-67, 2001. DOI: 10.1097/00010694-200101000-00009
FIGUEREDO FILHO, D. B.; SILVA JUNIOR, J. A. Visão além do alcance: uma introdução a análise fatorial. Opinião Pública, Campinas, v. 16, n. 1, p. 160-185, 2010. DOI: 10.1590/S0104-62762010000100007
FONGARO, G.; GARCIA-GONZALEZ, M. C.; HERNANDEZ, M.; KUNZ, A.; BARARDI, C. R. M.; RODRIGUEZ-LAZARO, D. Different behavior of enteric bacteria and viruses in clay soils after biofertilization with swine digestate. Frontiers in Microbiology, Lausanne, v. 8, n. 74, p. 1-9, 2017. DOI: 10.3389/fmicb.2017.00074
GARCIA-ALBACETE, M.; MARTIN, A.; CARTAGENA, C. Fractionation of phosphorus biowastes: Characterization and environmental risk. Waste Management, New York, v. 32, n. 6, p. 1061-1068, 2012. DOI: 10.1016/j.wasman.2012.02.003
GUNGOR, K.; KARTHIKEYAN, K. G. Phosphorus forms and extractability in dairy manure: a case study for Wisconsin on-farm anaerobic digesters. Bioresourse Technology, New York, v. 99, n. 2, p. 425-436, 2008. DOI: 10.1016/j.biortech.2006.11.049
HANSEN, K. H.; ALGELIDAKI, I.; AHRING, B. K. Anaerobic digestion of swine manure: inhibition by ammonia, Water Research, London, v. 32, n. 1, p. 5-12, 1998. DOI: 10.1016/S0043-1354(97)00201-7
LI, G.; LI, H.; LEFFELAAR, P. A.; SHEN, J.; ZHANG, F. Characterization of phosphorus in animal manures collected from three (dairy, swine, and broiler) farms in China. Plos One, California, v. 9, n. 7, p. 1-8, 2014. DOI: 10.1371/journal.pone.0102698
MARCATO, C. E.; MOHTAR, R.; REVEL, J. C.; POUECH, P.; HAFIDI, M.; GUIRESSE, M. Impact of anaerobic digestion on organic matter quality in pig slurry. International Biodeterioration and Biodegradation, London, v. 63, n. 7, p. 260-266, 2009. DOI: 10.1016/j.ibiod.2008.10.001
MARCATO, C. E.; PINELLI, E.; POUECH, P.; WINTERTON, P.; GUIRESSE, M. Particle size and metal distributions in anaerobilically digested pig slurry. Bioresourse Technology, New York, v. 99, n. 7, p. 2340-2348, 2008. DOI: 10.1016/j.biortech.2007.05.013
MASSÉ, D. I.; CROTEAU, F.; MASSE, L. The fate of crop nutrients during digestion of swine manure in psychrophilic anaerobic sequencing batch reactors. Bioresource Technology, New York, v. 98, n. 15, p. 2819-2823, 2007. DOI: 10.1016/j.biortech.2006.07.040
MOLLER, K.; MULLER, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Engineering in Life Science, Amsterdam, v. 12, n. 3, p. 242-257, 2012. DOI: 10.1002/elsc.201100085
MURPHY, J.; RILEY, J. P. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, New York, v. 27, n. 1, p. 31-36, 1962. DOI: 10.1016/S0003-2670(00)88444-5
ORRICO JUNIOR, M. A. P.; ORRICO, A. C. A.; LUCAS JUNIOR, J.; SAMPAIO, A. A. M.; FERNANDES, A. R. M.; OLIVEIRA, E. A. Biodigestão anaeróbia dos dejetos da bovinocultura de corte: influência do período, do genótipo e da dieta. Revista Brasileira de Zootecnia, Viçosa, MG, v. 41, n. 6, p. 1533-1538, 2012. DOI: 10.1590/S1516-35982012000600030
PHILIPPE, F. X.; NICKS, B. Review on greenhouse gas emissions from pig houses: production of carbon dioxide, methane and nitrous oxide by animals and manure. Agriculture, Ecosystems and Environment, Amsterdam, v. 199, n. 2, p. 10-25, 2015. DOI: 10.1016/j.agee.2014.08.015
PROVENZANO, M. R.; MALERBA, A. D.; PEZZOLLA, D.; GIGLIOTTI, G. Chemical and spectroscopic characterization of organic matter during the anaerobic digestion and successive composting of pig slurry. Waste Management, New York, v. 34, n. 7, p. 653-660, 2014. DOI: 10.1016/j.wasman.2013.12.001
RAJAGOPAL, R.; MASSE, D. I.; SINGH, G. A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresource Technology, New York, v. 143, n. 1, p. 632-641, 2013. DOI: 10.1016/j.biortech.2013.06.030
RODRIGUEZ-NAVAS, C.; BJORKLUND, E.; HALLING-SORENSEN, B.; HANSEN, M. Biogas final digestive byproduct applied to croplands as fertilizer contains high levels of steroid hormones. Environmental Pollution, London, v. 180, n. 48, p. 368-371, 2013. DOI: 10.1016/j.envpol.2013.05.011
SANCHEZ-MONEDERO, M. A.; ROIG, A.; MARTINEZ-PARDO, C.; CEGARRA, J.; PAREDES, C. A microanalysis method for determining total organic carbon in extracts of humic substances. Relationships between total organic carbon and oxidable carbon. Bioresource Technology, New York, v. 57, n. 3, p. 291-295, 1996. DOI: 10.1016/S0960-8524(96)00078-8
SILVA, F. A. S.; AZEVEDO, C. A. V. Versão do programa computacional Assistat para o sistema operacional Windows. Revista Brasileira de Produtos Agroindustriais, Campina Grande, v. 4, n. 1, p. 71-78, 2002.
SONG, K.; XUE, Y.; ZHENG, X.; LV, W.; QIAO, H.; QIN, Q.; YANG, J. Effects of the continuous use of organic manure and chemical fertilizer on soil inorganic phosphorus fractions in calcareous soil. Scientific Reports, New York, v. 1164, n. 7, p. 1-9, 2017. DOI: 10.1038/s41598-017-01232-2
SZOGI, A. A.; VANOTTI, M. A.; RO, K. S. Methods for treatment of animal manures to reduce nutrient Pollution prior to soil application. Current Pollution Reports, London, v. 1, n. 1, p. 47-56, 2015. DOI: 10.1007/s40726-015-0005-1
TAKAHASHI, S. Phosphorus characterization of manure composts and combined organic fertilizers by a sequential-fractionation method. Journal of Soil Science and Plant Nutrition, Temocu, v. 176, n. 1, p. 494-496, 2013. DOI: 10.1002/jpln.201200169
TAMBONE, F.; ADANI, F.; GIGLIOTTI, G.; VOLPE, D.; FABBRI, C.; PROVENZANO, M. R. Organic matter characterization during the anaerobic digestion of different biomass by means of CPMAS 13C NMR spectroscopy. Biomass and Bioenergy, Virginia, v. 48, n. 13, p. 111-120, 2013. DOI: 10.1016/j.biombioe.2012.11.006
TEDESCO, J. M.; GIANELLO, C.; BISSANI, C. A.; BOHNEN, H.; VOLKWEISS, S. J. Análises de solo, plantas e outros materiais. 2. ed. Porto Alegre: UFRGS, 1995. 174 p. (Boletim técnico, 5).
TIECHER, T.; ZAFAR, M.; MALLMANN, F. J. K.; BORTOLUZZI, E. C.; BENDER, M. A.; CIOTTI, L. H.; SANTOS, D. R. Animal manure phosphorus characterization by sequential chemical fractionation, release kinetics and 31P-NMR analysis. Revista Brasileira de Ciência do Solo, Viçosa, MG, v. 38, n. 5, p. 1506-1514, 2014. DOI: 10.1590/S0100-06832014000500016
TORRI, S. I.; CORREA, R. S.; RENELLA, G. Biosolid application to agricultural land - a contribution to global phosphorus recycle: a review. Pedosphere, Beijing, v. 27, n. 1, p. 1-16, 2017. DOI: 10.1016/S1002-0160(15)60106-0
WALKLEY, A.; BLACK, A. An examination of the degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, New York, v. 37, n. 1, p. 29-38, 1934. DOI: 10.1097/00010694-193401000-00003
YEOMANS, J. C.; BREMNER, J. M. A rapid and precise method for routine determination of organic carbonic in soil. Comunicata Soil Science Plant Analisys, New York, v. 19, n. 13, p. 1476-1476, 1988. DOI: 10.1080/00103628809368027
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2019 Semina: Ciências Agrárias
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adota para suas publicações a licença CC-BY-NC, sendo os direitos autorais do autor, em casos de republicação recomendamos aos autores a indicação de primeira publicação nesta revista.
Esta licença permite copiar e redistribuir o material em qualquer meio ou formato, remixar, transformar e desenvolver o material, desde que não seja para fins comerciais. E deve-se atribuir o devido crédito ao criador.
As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário.