Quantile nonlinear regression for modeling maize growth data

Quantile nonlinear regression for modeling maize growth data

Authors

DOI:

https://doi.org/10.5433/1679-0375.2025.v46.53256

Keywords:

nonlinear models, quantile regression, intrinsec nonlinearity measure, corn culture, growth curve analisys

Abstract

Statistical modeling is fundamental in plant growth studies as it guides management practices across different developmental stages. Among existing approaches, nonlinear regression models stand out for describing growth patterns over time through estimated parameters, typically obtained via least squares methods. However, this approach is limited to average data analysis and remains sensitive to outliers and variance heterogeneity. Quantile regression emerges as a robust alternative, enabling estimation across different quantiles without requiring normality assumptions for errors. This study aimed to analyze corn plant growth over time using quantile nonlinear regression and to investigate critical points in the applied models. We evaluated logistic, Gompertz, and Chanter models, assessing their goodness-of-fit through the Akaike Information Criterion (AIC), intrinsic nonlinearity measures, and two novel statistics proposed here: quantile correlation and the weighted sum of squared deviations (WSSD). Results demonstrated that the Chanter model provided the best fit for the analyzed dataset, with strong performance across different quantiles.

Downloads

Download data is not yet available.

Author Biographies

Pollyane Vieira da Silva, Universidade Federal de Pelotas

Professor of Statistics at the Federal University of Pelotas (UFPel). She has experience in Statistics and Education. She earned a bachelor's degree in Mathematics from UNESP's Rio Claro campus (2011-2016) and a second degree in Pedagogy from UNIVESP (2018-2022). In 2018, she completed her master's degree and in 2022 her doctorate in Statistics and Agricultural Experimentation at ESALQ/USP, focusing on nonlinear models applied to animal and plant growth data. In 2021, she completed a specialization in School Management at the PECEGE Institute and an MBA at ESALQ/USP.

Taciana Villela Savian, Universidade de São Paulo

She holds a degree in Animal Science from the Federal University of Lavras (2002), a master's degree in Agronomy (Statistics and Agricultural Experimentation) from the Federal University of Lavras (2005), a PhD in Statistics and Agricultural Experimentation from the Federal University of Lavras (2008) and a post-doctorate (PRODOC) from the Federal University of Lavras (2010). She is currently a professor at the Luiz de Queiroz College of Agriculture at the University of São Paulo (USP). She has experience in Non-Linear Regression Models, working mainly on the following topics: non-linear regression, ruminal degradability model, animal and plant growth curves.

References

Akaike, H. (2003). A new look at the statistical model identification. IEEE transactions on automatic control,19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705

Amador, J. P. (2010). Modelos mistos no ajuste de curvas de crescimento de Ricinus communis L. [Tese de doutorado, Universidade Federal de Santa Maria]. Repositório institucional. https://repositorio.ufsm.br/handle/1/3192

Cargnelutti, A. Filho & Toebe, M. (2020). Reference sample size for multiple regression in corn. Pesquisa Agropecuária Brasileira, 55, e01400. https://doi.org/10.1590/S1678-3921.pab2020.v55.01400

Crosariol Netto, J. (2013). Infestação de dados e Dichelops melacanthus (Dallas, 1851) (Heteroptera: Pentatomidae) em híbridos transgênicos e convencionais de milho, submetidos ao controle químico [Dissertação de mestrado, Universidade Estadual Paulista "Júlio de Mesquita Filho"]. Repositório institucional. http://hdl.handle.net/11449/91328

Fernandes, T. J., & Pereira, A. A. M. J. A. (2017). Double sigmoidal models describing the growth of coffee berries. Ciência Rural, 47(8), 1–8. https://doi.org/10.1590/0103-8478cr20160646

Gray, V. M. (2000). A comparison of two approaches for modelling cassava (Manihot esculenta Crantz.) crop growth. Annals of Botany, 85(1), 77–90. https://doi.org/10.1006/anbo.1999.0999

Hao, L., & Naiman, D. Q. (2007). Quantile Regression. Sage Publications.

Koenker, R. (2005). Quantile Regression (Vol. 1). Cambridge University Press.

Koenker, R., & Basset, G. J. (1978). Regression quantiles. Econometrica: Journal of the Econometric Society, 46(1), 33–50. https://doi.org/10.2307/1913643

Mazucheli, J., & Achcar, J. A. (2002). Algumas considerações em regressão não linear. Acta Scientiarum, 24(6), 1761–1770. https://doi.org/10.4025/actascitechnol.v24i0.2551

Migault, V., Combes, D., Barre, P., Gueye, B., Louarn, G., & Escobar-Gutiérrez, A. J. (2012). Improved modelling of ryegrass foliar growth. Proceedings of the Plant Growth Modeling, Simulation, Visualization and Applications [Proceesding]. 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications, Shanghai, China. https://doi.org/10.1109/PMA.2012.6524847

Mischan, M. M., & Pinho, S. Z. (2014). Modelos não lineares. Cultura Acadêmica.

R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

Ratkowsky, D. A. (1983). Nonlinear Regression Modeling. Dekker.

Silva, E. M., Fruhauf, A. C., Silva, E. M., Muniz, J. A., Fernandes, T. J., & Silva, V. F. (2021). Evaluation of the critical points of the most adequate nonlinear model in adjusting growth data of ‘green dwarf’ coconut fruits. Revista Brasileira de Fruticultura, 43(1), e–726. https://doi.org/10.1590/0100-29452021726

Silva, P. V. (2018). Modelo não linear Chanter: uma aplicação aos dados de crescimento de frutos do cacaueiro [Dissertação de mestrado, Universidade de São Paulo]. Repositório institucional. https://doi.org/10.11606/D.11.2018.tde-02072018-103309

Silva, P. V. (2022). Uso da regressão não linear quantílica na descrição de dados de crescimento [Tese de doutorado, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo]. Repositório institucional. https://doi.org/10.11606/T.11.2022.tde-10052022-155257

Silva, P. V., & Savian, T. V. (2019). Chanter model: nonlinear modeling of the fruit growth of cocoa. Ciência Rural, 49(11), e20190409. https://doi.org/10.1590/0103-8478cr20190409

Sorrel, B. K., Tanner, C. C., & Brix, H. (2012). Regression analysis of growth responses to water depth in three wetland plant species. AoB Plants, pls043. https://doi.org/10.1093/aobpla/pls043

Souza, R. J., & Macêdo, F. S. (2009). Cultura do alho: Tecnologias modernas de produção. Editora UFLA. United States Department of Agriculture. (2025). World Agricultural Production (Circular Series WAP 09-25). https://apps.fas.usda.gov/psdonline/circulars/production.pdf

Younesi, H. N., Shariati, M. M., Zerehdaran, S., Nooghabi, M., & Lovendahl, P. (2019). Using quantile regression for fitting lactation curve in dairy cows. Journal of Dairy Research, 86(1), 19–24. https://doi.org/10.1017/S0022029919000013

Zeviani, W. M., Silva, A. C., Carneiro, W. J. O., & Muniz, J. A. (2012). Modelos não-lineares para a liberação de potássio de estercos animais em latossolos. Ciência Rural, 42(10), 1789–1796. https://doi.org/10.1590/S0103-84782012001000012

Downloads

Published

2025-12-02

How to Cite

Silva, P. V. da, & Savian, T. V. (2025). Quantile nonlinear regression for modeling maize growth data. Semina: Ciências Exatas E Tecnológicas, 46, e53256. https://doi.org/10.5433/1679-0375.2025.v46.53256

Issue

Section

Biomathematics (Special section)
Loading...