Eficiência das Nanopartículas de ZnO no Tratamento de Efluente Contendo Amarelo Ouro Remazol

Eficiência das Nanopartículas de ZnO no Tratamento de Efluente Contendo Amarelo Ouro Remazol

Autores

DOI:

https://doi.org/10.5433/1679-0375.2024.v45.49498

Palavras-chave:

óxido de zinco, degradação fotocatalítica, método hidrotermal, azo corante

Resumo

Óxido de Zinco (ZnO) foi sintetizado em curto tempo pelo método hidrotermal assistido por micro-ondas e caracterizado pelas técnicas de Difração de Raios-X, Microscopia Eletrônica de Varredura e adsorção-dessorção de N2. A atividade fotocatalítica do ZnO foi avaliada na degradação do azo corante amarelo ouro remazol (RNL) na presença de irradiação UVC. O efeito da concentração do corante, massa do fotocatalisador e pH da solução do corante foi investigado. As caracterizações mostraram a formação de ZnO fase hexagonal com alta ordem a longo alcance e formação de agregados particulados resultando em uma morfologia quase esférica. Os ensaios de fotocatálise mostraram alta eficiência fotocatalítica (92%) na degradação do corante, em curto espaço de tempo. Em condições ácidas e baixas concentrações de corante, o efeito fotocatalítico foi mais eficaz. A fotodegradação RNL seguiu o modelo cinético de pseudo-primeira ordem. O modelo Langmuir-Hinshelwood (L-H) foi usado para descrever o processo fotocatalítico.

Downloads

Não há dados estatísticos.

Biografia do Autor

Guilherme Leocárdio Lucena, Universidade Federal da Paraíba

Dr., Dpto. de Ciências Básicas, Sociais e Agrárias, UFPB, Bananeiras, PB, Brasil, guilhermelucena@cchsa.ufpb.br

Renata Júlia Cordeiro Araújo, Universidade Federal da Paraíba

Graduanda, Agroindústria, UFPB, Bananeiras, PB, Brasil. renatajulia1998@gmail.com

Rafael Pereira da Silva, Universidade Federal da Paraíba

Graduando, Agroindústria, UFPB, Bananeiras, PB, Brasil. rafaelps19972015@gmail.com

Anely Maciel de Melo, Universidade Federal da Paraíba

Dr. Prof., Dpto. de Gestão e Tecnologia Agroindustrial, UFPB, Bananeiras, PB, Brasil. anely-maciel@live.com

Max Rocha Quirino, Universidade Federal da Paraíba

Dr. Prof., Dpto. de Ciências Básicas, Sociais e Agrárias, UFPB, Bananeiras, PB, Brasil. maxrochaq@gmail.com

Referências

Alfarisa, S., Toruan, P. L., Dwandaru, W. S. B., Hudha, M. N., & Sumarlan, I. (2019). Microwave-assisted hydrothermal growth of ZnO micro-nano structures. Journal of Physics: Conference Series, 1375, 1-6. DOI: https://doi.org/10.1088/1742-6596/1375/1/012062

Alsantali, R. I., Raja, Q. A., Alzahrani, A. Y. A., Sadiq, A., Naeem, N., Mughal, E. U., Al-Rooqi, M. A., Guesmi, N. E., Moussa, Z., & Ahmed, S. A. (2022). Miscellaneous azo dyes: a comprehensive review on recent advancements in biological and industrial applications. Dyes and Pigments, 199, 1-47. DOI: https://doi.org/10.1016/j.dyepig.2021.110050

Alzain, H., Kalimugogo, V., Hussein, K., & Karkadan, M. (2023). A review of environmental impact of azo dyes. International Journal of Research and Review, 10(6), 673-689. DOI: https://doi.org/10.52403/ijrr.20230682

Ansari, S. A., Khan, M. M., Ansari, M. O., Lee, J., & Cho, M. H. (2013). Biogenic synthesis, photocatalytic, and photoelectrochemical performance of Ag-ZnO nanocomposite. The Journal of Physical Chemistry C, 117(51), 27023-27030. DOI: https://doi.org/10.1021/jp410063p

Barka, N., Qourzal, S., Assabbane, A., Nounah, A., & Ichou, Y. A. (2010). Photocatalytic degradation of an azo reactive dye, Reactive Yellow 84, in water using an industrial titanium dioxide coated media. Arabian Journal of Chemistry, 3, 279-283. DOI: https://doi.org/10.1016/j.arabjc.2010.06.016

Benkhaya, S., M'rabet, S., & Harfi, A. E. (2020). Classifications, properties, recent synthesis and applications of azo dyes. Heliyon, 6(1), 1-26. DOI: https://doi.org/10.1016/j.heliyon.2020.e03271

Carmen, Z., & Daniela, S. (2012). Textile organic dyes-characteristics, polluting effects and separation/elimination procedures from industrial effluents-a critical overview. In T. Puzyn & A. Mostrag (Eds.), Organic pollutants ten years after the stockholm convention - environmental and analytical update (pp. 55-86). IntechOpen. DOI: https://doi.org/10.5772/32373

Catanho, M., Malpass, G. R. P., & Motheo, A. J. (2006). Evaluation of electrochemical and photoelectrochemical methods for the degradation of three textile dyes. Química Nova, 29, 983-989. DOI: https://doi.org/10.1590/S0100-40422006000500018

Chankhanittha, T., & Nanan, S. (2018). Hydrothermal synthesis, characterization and enhanced photocatalytic performance of ZnO toward degradation of organic azo dye. Materials Letters, 226, 79-82. DOI: https://doi.org/10.1016/j.matlet.2018.05.032

Chen, X., Wu, Z., Liu, D., & Gao, Z. (2017). Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Research Letters, 12, 143-152. DOI: https://doi.org/10.1186/s11671-017-1904-4

Chung, K. T. (2016). Azo dyes and human health: A review. Journal of Environmental Science and Health C, 34(4), 233-261. DOI: https://doi.org/10.1080/10590501.2016.1236602

Ertugay, N., & Acar, F. N. (2017). Ultrasound and UV stimulated heterogeneous catalytic oxidation of an azo dye: A synergistic effect. Progress in Reaction Kinetics and Mechanism, 42(3), 235-243. DOI: https://doi.org/10.3184/146867817X14821527549095

Hasanpoor, M., Aliofkhazraei, M., & Delavari, H. (2015). Microwave-assisted synthesis of zinc oxide nanoparticles. Procedia Materials Science, 11, 320-325. DOI: https://doi.org/10.1016/j.mspro.2015.11.101

Hougen, O. A., & Watson, K. M. (1943). Solid catalysis and reaction rates. Industrial & Engineering Chemistry Research, 35(5), 529-541. DOI: https://doi.org/10.1021/ie50401a005

Kaur, J., Bansal, S., & Singhal, S. (2013). Photocatalytic degradation of methyl orange using ZnO nanopowders synthesized via thermal decomposition of oxalate precursor method. Physica B, 416, 33-38. DOI: https://doi.org/10.1016/j.physb.2013.02.005

Komarneni, S., Roy, R., & Li, Q. H. (1992). Microwave-hydrothermal synthesis of ceramic powders. Materials Research Bulletin, 27(12), 1393-1405. DOI: https://doi.org/10.1016/0025-5408(92)90004-J

Lee, H. J., H., K. J., Park, S. S., Hong, S. S., & Lee, G. D. (2015). Degradation kinetics for photocatalytic reaction of methyl orange over Al-doped ZnO nanoparticles. Journal of Industrial and Engineering Chemistry, 25, 199-206. DOI: https://doi.org/10.1016/j.jiec.2014.10.035

Lucena, G. L., Lima, L. C., Honório, L. M. C., Oliveira, A. L. M., Tranquilin, R. L., Longo, E., Souza, A. G., Maia, A. S., & Santos, I. M. G. (2017). CaSnO3 obtained by modified Pechini method applied in the photocatalytic degradation of an azo dye. Cerâmica, 63, 536-541. DOI: https://doi.org/10.1590/0366-69132017633682190

Mahmood, T., Saddique, M. T., Naeem, A., Westerhoff, P., Mustafa, S., & Alum, A. (2011). Comparison of different methods for the point of zero charge determination of NiO. Industrial & Engineering Chemistry Research, 50(17), 10017-10023. DOI: https://doi.org/10.1021/ie200271d

Manikanika & Chopra, L. (2022). Photocatalytic activity of zinc oxide for dye and drug degradation: A review. Materials Today: Proceedings, 52, 1653-1656. DOI: https://doi.org/10.1016/j.matpr.2021.11.283

Paz, D. S., Dotto, G. L., Mazutti, M. A., & Foletto, E. L. (2014). Adsorption kinetics of direct black 38 on nitrogen-doped TiO2. Global Nest Journal, 16(4), 690-698. DOI: https://doi.org/10.30955/gnj.001411

Puvaneswari, N., Muthukrishnan, J., & Gunasekkaren, P. (2006). Toxicity assessment and microbial degradation of azo dyes. Indian Journal of Experimental Biology, 44(8), 618-626.

Quirino, M. R., Oliveira, M. J. C., Keyson, D., Lucena, G. L., Oliveira, J. B. L., & Gama, L. (2017). Synthesis of zinc oxide by microwave hydrothermal method for application to transesterification of soybean oil (biodiesel). Materials Chemistry and Physics, 185, 24-30. DOI: https://doi.org/10.1016/j.matchemphys.2016.09.062

Robles, J. O., & Regalbuto, J. R. (2004). The Engineering of Pt/Carbon Catalyst Preparation for application on Proton Exchange Fuel Cell Membrane (PEFCM). University of Illinois at Chicago.

Schimidt, R., Gonjal, J. P., & Morán, E. (2022). Microwaves microwave-assisted hydrothermal synthesis of nanoparticles. In B. I. Kharisov & O. V. K. U. Ortiz-Mendez (Eds.), CRC Concise Encyclopedia of Nanotechnology (pp. 561-570). CRC Press Taylor & Francis Group.

Shen, T., Wang, C., Sun, J., Jiang, C., Wang, X., & Li, X. (2015). TiO2 modified abiotic-biotic process for the degradation of azo dye methyl orange. RSC Advances, 5, 58704-58712. DOI: https://doi.org/10.1039/C5RA06686G

Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., & Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57(4), 603-619. DOI: https://doi.org/10.1351/pac198557040603

Sun, Y., Guo, H., Zhang, W., Zhou, T., Qiu, Y., Xu, K., Zhang, B., & Yang, H. (2016). Synthesis and characterization of twinned flower-like ZnO structures grown by hydrothermal methods. Ceramics International, 42(8), 9648-9652. DOI: https://doi.org/10.1016/j.ceramint.2016.03.051

Surbhi, Chakraborty, I., & Pandey, A. (2023). A review article on application of ZnO-based nanocomposite materials in environmental remediation. Materials Today: Proceedings. In press. DOI: https://doi.org/10.1016/j.matpr.2023.02.041

Teixeira, T. P. F., Pereira, S. I., Aquino, S. F., & Dias, A. (2012). Calcined layered double hydroxides for decolorization of azo dye solutions: Equilibrium, kinetics, and recycling studies. Environmental Engineering Science, 29(7), 685-692. DOI: https://doi.org/10.1089/ees.2011.0293

Thomas, M., Naikoo, G. A., Sheikh, M. U. D., Bano, M., & Khan, F. (2016). Effective photocatalytic degradation of congo red dye using alginate/carboxymethyl cellulose/TiO2 nanocomposite hydrogel under direct sunlight irradiation. Journal of Photochemistry and Photobiology A., 327, 33-43. DOI: https://doi.org/10.1016/j.jphotochem.2016.05.005

Uday, U. S. P., Bandyopadhyay, T. K., & Bhunia, B. (2016). Bioremediation and detoxification technology for treatment of dye(s) from textile effluent. In E. P. A. Kumbasar, & A. E. Körlü (Eds). Textile Wastewater Treatment. (pp. 75-92) Intechopen. DOI: https://doi.org/10.5772/62309

Vaiano, V., & De Marco, I. (2023). Removal of azo dyes from wastewater through heterogeneous photocatalysis and supercritical water oxidation. Separations, 10(4), 230. DOI: https://doi.org/10.3390/separations10040230

Weldegebrieal, G. K. (2020). Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review. Inorganic Chemistry Communications, 120, 1-29. DOI: https://doi.org/10.1016/j.inoche.2020.108140

Yassumoto, L., Monezi, N. M., & Takashima, K. (2009). Descoloração de alguns azocorantes por processos de fotólise direta e H2O2/UV. Semina: Ciências Exatas e Tecnológicas, 30(2), 117-124. DOI: https://doi.org/10.5433/1679-0375.2009v30n2p117

Zhu, H., Jiang, R., Fu, Y., Guan, Y., Yao, J., Xiao, L., & Zeng, G. (2012). Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation. Desalination, 286, 41-48. DOI: https://doi.org/10.1016/j.desal.2011.10.036

Publicado

2024-03-28

Como Citar

Lucena, G. L., Cordeiro Araújo, R. J., Silva, R. P. da, de Melo, A. M., & Quirino, M. R. (2024). Eficiência das Nanopartículas de ZnO no Tratamento de Efluente Contendo Amarelo Ouro Remazol. Semina: Ciências Exatas E Tecnológicas, 45, e49498. https://doi.org/10.5433/1679-0375.2024.v45.49498

Edição

Seção

Química
Loading...