Análise de correspondência Canônica não linear: Descrição de dados Sensoriais de Cafés

Análise de correspondência Canônica não linear: Descrição de dados Sensoriais de Cafés

Autores

DOI:

https://doi.org/10.5433/1679-0375.2023.v44.47875

Palavras-chave:

cafés especiais, café comercial, regressão polinomial multivariada, avaliadores, blends

Resumo

A formulação de blends de café é de suma importância para a indústria cafeeira, pois proporciona ao produto expressiva capacidade de competição de mercado e agrega atributos sensoriais que complementam a experiência de consumo. Por meio da análise de redundância e análise de correspondência canônica é possível estudar as relações entre um conjunto de notas sensoriais e um conjunto de blends com diferentes proporções de variedade de café através de modelos de regressão linear multivariados. Contudo, não é realista assumir que tais respostas sensoriais são dadas de forma linear em relação à formulação dos blends, visto que algumas espécies de café têm maior peso na avaliação sensorial (termos quadráticos) e deve-se considerar o efeito das misturas (termo de interação). Com esta motivação, este trabalho tem como objetivo propor o uso da análise de redundância e análise de correspondência não lineares através da regressão polinomial multivariada para avaliar a aceitação de diferentes variedades de blends de café de acordo com as notas dadas pelos avaliadores. Por fim, conclui-se que houve ganhos no percentual de variância explicada total nos modelos polinomiais em relação aos modelos clássicos.

Downloads

Não há dados estatísticos.

Biografia do Autor

Herbert Stein Pereira Torres Santos, Universidade Federal de Lavras - MG

Mestrando,  PPGEEA, UFLA, Lavras, MG, Brasil

Marcelo Angelo Cirillo, Universidade Federal de Lavras - MG

Prof. Dr., DES, UFLA, Lavras, MG, Brasil

Flávio Meira Borém, Universidade Federal de Lavras - MG

Prof. Dr., DEA, UFLA, Lavras, MG, Brasil

Diana Del Rocío Rebaza Fernández, Universidade Nacional Agrária de La Molina

Prof. Mg.Sc., DAEI, UNALM, Lima, Peru

Referências

Cirillo, M. A., Ramos, M. F., Borém, F. M., Miranda, F. M., Ribeiro, D. E., & Menezes, F. S. (2019). Statistical procedure for the composition of a sensory panel of blends of coffee with different qualities using the distribution of the extremes of the highest scores. Acta Scientiarum. Agronomy, 41(1), e39323. https://doi.org/10.4025/actasciagron.v41i1. 39323 DOI: https://doi.org/10.4025/actasciagron.v41i1.39323

Costa, A. L. A., Brighenti, C. R. G., & Cirillo, M. A. (2018). A new approach to simple correspondence analysis with emphasis on the violation of the independence assumption of the levels of categorical variables. Acta Scientiarum. Technology, 40, e34953. https://doi.org/10.4025/actascitechnol.v40i1.34953 DOI: https://doi.org/10.4025/actascitechnol.v40i1.34953

Costa, A. S., Resende, M., Nakayo, E. Y., Cirillo, M. A., Borém, F. M., & Ribeiro, D. E. (2020). Proposal of a metric selection index for correspondence analysis: An application in the sensory evaluation of coffee blends. Semina: Ciências Agrárias, 41(2), 479–492. https://doi.org/10.5433/1679-0359.2020v41n2p479 DOI: https://doi.org/10.5433/1679-0359.2020v41n2p479

Guimarães, E. R. (2016). Terceira onda do café: Base conceitual e aplicações. [Master’s thesis, Universidade Federal de Lavras].

Ivoglo, M. G., Fazuoli, L. C. F., Oliveira, A. C. B., Gallo, P. B., Mistro, J. C., Silvrolla, M. B., & Toma-Braghini, M. (2008). Genetic divergence among robusta coffe progenies. Bragantia, 67(4), 823–831. https://doi.org/10. 1590/S0006-8705200800040000 DOI: https://doi.org/10.1590/S0006-87052008000400003

Lazraq, A., & Cléroux, R. (2002). Testing the significance of the successive components in redundancy analysis. Psychometrika, 67(3), 411– 419. https://doi.org/10.1007/BF02294993 DOI: https://doi.org/10.1007/BF02294993

Legendre, P., & Legendre, L. (2012). Numerical ecology (2nd ed., Vol. 1). DOI: https://doi.org/10.1016/B978-0-444-53868-0.50001-0

Elsevier. Lima, T., Lucia, S. M. D., Saraiva, S. H., & Lima, R. M. (2015). Physico-chemical characterization of espresso coffee beverage prepared from blends of arabica and conilon coffees. Rev. Ceres, 62(4), 333–339. https://doi.org/10.1590/0034-737X201562040001 DOI: https://doi.org/10.1590/0034-737X201562040001

Makarenkov, V., & Legendre, P. (2002). Nonlinear redundancy analysis and canonical correspondence analysis based on polynomial regression. Ecology, 83(4), 1146–1161. https://doi.org/10.2307/3071920 DOI: https://doi.org/10.1890/0012-9658(2002)083[1146:NRAACC]2.0.CO;2

Messias, R. M. (2016). Transformações em dados composicionais para a aplicação da análise de componentes principais. [Thesis Ph.D.] Universidade de São Paulo.

Oksanen, A. J., Blanchet, F. G., & Kindt, R. (2020). Vegan: Community ecology package version 2.5-7. R Foundation for Statistical Computing. http://cran.r-project.%20org/package=%20vegan,%202020

Ossani, P. C., Cirillo, M. A., Borém, F. M., Ribeiro, D. E., & Cortez, R. M. (2017). Qualidade de cafés especiais: Uma avaliação sensorial feita com consumidores utilizando a técnica MFACT. Ciência Agronômica, 48(1), 92–100. https://doi.org/10.5935/1806-6690.20170010 DOI: https://doi.org/10.5935/1806-6690.20170010

Paulino, A. L. B., Cirillo, M. A., Ribeiro, D. E., Borém, F. M., & Matias, G. C. (2019). A mixed model applied to joint analysis in experiments with coffee blends using the least squares method. Ciência Agronômica, 50(3), 345–352. https://doi.org/10.5935/1806-6690.20190041 DOI: https://doi.org/10.5935/1806-6690.20190041

Rencher, A. C. (2002). Methods of multivariate analysis (Vol. 1). DOI: https://doi.org/10.1002/0471271357

John Wiley & Sons, Inc. Ribeiro, B. B., Mendonça, L. M. V. L., Assis, G. A., Mendonça, J. M. A., Malta, M. R., & Montanari, F. F. (2014). Avaliação química e sensorial de blends de Coffea canephora pierre e Coffea arabica L. Coffee Science, 9(2), 178– 186. http://www.sbicafe.ufv.br:80/handle/123456789/8027

Ribeiro, D. E., Borém, F. M., Cirillo, M. A., Prado, M. V. B., Ferraz, V. P., Alves, H. M. R., & Taveira, J. H. S. (2016). Interaction of genotype, environment and processing in the chemical composition expression and sensorial quality of arabica coffee. Afr. J. Agric. Res., 11(27), 2412–2422. https://doi.org/10. 5897/AJAR2016.10832 DOI: https://doi.org/10.5897/AJAR2016.10832

Stewart, D., & Love, W. (1968). A general canonical correlation index. Psychol Bull, 70(3), 160– 163. https://doi.org/10.1037/h0026143 DOI: https://doi.org/10.1037/h0026143

Ter Braak, C. J. F. (1986). Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology, 67(5), 1167–1179. https://doi.org/10.2307/1938672 DOI: https://doi.org/10.2307/1938672

Van den Wollenberg, A. L. (1977). Redundancy analysis an alternative for canonical correlation analysis. Psychometrika, 42(2), 207– 219. https://doi.org/10.1007/BF02294050 DOI: https://doi.org/10.1007/BF02294050

Wickham, H., François, R., Henry, L., Muller, K., & Vaughant, D. (2020). Dplyr: A grammar of data manipulation. R Foundation for Statistical Computing-R package version 0.8. 5. 700. https://CRAN%20Rproject.org/package=%20dplyr,%20v%20701,%202020

Publicado

2023-06-23

Como Citar

Herbert Stein Pereira Torres Santos, Marcelo Angelo Cirillo, Borém, F. M., & Rebaza Fernández, D. D. R. (2023). Análise de correspondência Canônica não linear: Descrição de dados Sensoriais de Cafés. Semina: Ciências Exatas E Tecnológicas, 44, e47875. https://doi.org/10.5433/1679-0375.2023.v44.47875

Edição

Seção

Estatística

Artigos mais lidos pelo mesmo(s) autor(es)

Loading...