A Hybrid Model for Cellular Dynamics in Colorectal Crypts
DOI:
https://doi.org/10.5433/1679-0375.2025.v46.53590Keywords:
colon crypt, partial differential equations, tessellation, cell proliferation and differentiation, finite element methodAbstract
Colorectal cancer is believed to originate from abnormal cell proliferation in small cavities of its epithelium called crypts. We present a hybrid framework that couples a Voronoi tessellation-based cell model with a continuous differential model to describe cellular dynamics, proliferation, and differentiation in a colorectal crypt. The framework is implemented numerically using finite difference and finite element methods.
This~allows us to simulate how cells move, proliferate, and differentiate in normal and abnormal scenarios.
We consider in particular the normal homeostatic case for validating the framework, and simulate two abnormal scenarios where perturbations in cell distribution or proliferation are imposed. The benefit of such a hybrid model is that we can freely impose perturbations and show results for cellular dynamics, proliferation, and differentiation at two different scales: a macro continuous scale and a micro cell scale. This framework provides insights into how cell behavior changes under abnormal conditions and how crypt lesions and adenomas may originate from cellular dynamics perturbations.
Downloads
References
Almet, A. A., Byrne, H. M., Maini, P., & Moulton, D. E. (2021). The role of mechanics in the growth and homeostasis of the intestinal crypt. Biomechanics and Modeling in Mechanobiology, (20), 585–608. https://doi.org/10.1007/s10237-020-01402-8
Alnæs, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C. N., Ring, J., Rognes, M. E., & Wells, G. N. (2015). The FEniCS Project Version 1.5. Archive of Numerical Software, 3(100), 9–23. https://doi.org/10.11588/ans.2015.100.20553
Asarian, L., Gloy, V., & Geary, N. (2012). Homeostasis. In V. Ramachandran (Ed.), Encyclopedia of Human Behavior (2nd ed., pp. 324–333). Academic Press.
Baker, A. M., Cereser, B., Melton, S., Fletcher, A. G., Rodriguez-Justo, M., Tadrous, P. J., Humphries, A., Elia, G., McDonald, S. A., Wright, N. A., Simons, B. D., Jansen, M., & Graham, T. A. (2014). Quantification of crypt and stem cell evolution in the normal and neoplastic human colon. Cell Reports, 8(4), 940–947. https://doi.org/10.1016/j.celrep.2014.07.019
Bernstein, C., Facista, A., Nguyen, H., Zaitlin, B., Hassounah, N., Loustaunau, C., Payne, C. M., Banerjee, B., Goldschmid, S., Tsikitis, V. L., Krouse, R., & Bernstein, H. (2010). Cancer and age related colonic crypt deficiencies in cytochrome c oxidase I. World Journal of Gastrointestinal Oncology, 2(12), 429–442. https://doi.org/10.4251/wjgo.v2.i12.429
Chandrasinghe, P. C. (2018). Basics in molecular evolution of colorectal cancer and their implications for the surgeon: is it a ’big-bang’ or a ’survival of the toughest’? The Sri Lanka Journal of Surgery, 36(2), 18–21. https://doi.org/10.4038/sljs.v36i2.8511
Di Garbo, A., Johnston, M. D., Chapman, S. J., & Maini, P. K. (2010). Variable renewal rate and growth properties of cell populations in colon crypts. Physical Review E, 81(6), 061909. https://doi.org/10.1103/PhysRevE.81.061909
Drasdo, D., & Loeffler, M. (2001). Individual-based models to growth and folding in one-layered tissues: Intestinal crypts and early development. Nonlinear Analysis: Theory, Methods & Applications, 47(1), 245–256. https://doi.org/10.1016/S0362-546X(01)00173-0
Figueiredo, I. N., Leal, C., Romanazzi, G., & Engquist, B. (2019). Biomathematical model for simulating abnormal orifice patterns in colonic crypts. Mathematical Biosciences, 315, 108221. https://doi.org/10.1016/j.mbs.2019.108221
Greenspan, H. P. (1976). On the growth and stability of cell cultures and solid tumors. Journal of Theoretical Biology, 56(1), 229–242. https://doi.org/10.1016/S0022-5193(76)80054-9
Guebel, D. V., & Torres, N. V. (2008). A computer model of oxygen dynamics in human colon mucosa: Implications in normal physiology and early tumor development. Journal of Theoretical Biology, 250(3), 389–409. https://doi.org/10.1016/j.jtbi.2007.09.035
Kershaw, S. K., Byrne, H. M., Gavaghan, D. J., & Osborne, J. M. (2013). Colorectal cancer through simulation and experiment. IET Systems Biology, 7(3), 57–73. https://doi.org/10.1049/iet-syb.2012.0019
Meineke, F. A., Potten, C. S., & Loeffler, M. (2001). Cell migration and organization in the intestinal crypt using a lattice-free model. Cell Proliferation. https://doi.org/10.1046/j.0960-7722.2001.00216.x
Murray, P. J., Walter, A., Fletcher, A. G., Edwards, C. M., Tindall, M. J., & Maini, P. K. (2011). Comparing a discrete and continuum model of the intestinal crypt. Physical Biology, 8(2), 026011.
Nicolas, P., Kim, K. M., Shibata, D., & Tavaré, S. (2007). The stem cell population of the human colon crypt: Analysis via methylation patterns. PLoS Computational Biology, 3(3), e28. https://doi.org/10.1371/journal.pcbi.0030028
Oliveira, E. P., & Romanazzi, G. (2022). Modeling and computer simulation of viscoelastic crypt deformation. Trends in Computational and Applied Mathematics, 23(1), 193–211. https://doi.org/10.5540/tcam.2022.023.01.00193
Osborne, J. M. (2015). A multiscale model of colorectal cancer using the cellular Potts framework. Cancer Informatics, 14, 83–93. https://doi.org/10.4137/CIN.S193
Potten, C. S., Kellett, M., Roberts, S. A., Rew, D. A., & Wilson, G. D. (1992). Measurement of in vivo proliferation in human colorectal mucosa using bromodeoxyuridine. Gut, 33(1), 71–78. https://doi.org/10.1136/gut.33.1.71
Python Software Foundation. (2024). Python Language Reference, Version 3.2. https://www.python.org/download/releases/3.2/
Romanazzi, G., & Settanni, G. (2022). Mathematical Model for Simulation of Morphological Changes associated to Crypt Fission in the Colon. Discrete and Continuous Dynamical Systems - Series S, 15(12), 3781–3805. https://doi.org/10.3934/dcdss.2022055
Sousa, I. J. L. (2024). Modelos Celulares nas Criptas do Cólon: Análise e Implementação Numérica [Dissertação de Mestrado, Universidade Estadual de Campinas]. Repositório Institucional. https://doi.org/10.47749/T/UNICAMP.2024.1408687
van Leeuwen, I. M., Mirams, G., Walter, A., Fletcher, A., Murray, P., Osborne, J., Varma, S., Young, S., Cooper, J., Doyle, B., et al. (2009). An integrative computational model for intestinal tissue renewal. Cell Proliferation, 42(5), 617–636. https://doi.org/10.1111/j.1365-2184.2009.00627.x
van Leeuwen, I. M. M., Byrne, H. M., Jensen, O. E., & King, J. R. (2006). Crypt dynamics and colorectal cancer: Advances in mathematical modelling. Cell Proliferation, 39(3), 157–181. https://doi.org/10.1111/j.1365-2184.2006.00378.x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ítalo José Lima de Sousa, Giuseppe Romanazzi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Copyright Declaration for articles published in this journal is the author's right. Since manuscripts are published in an open access Journal, they are free to use, with their own attributions, in educational and non-commercial applications. The Journal has the right to make, in the original document, changes regarding linguistic norms, orthography, and grammar, with the purpose of ensuring the standard norms of the language and the credibility of the Journal. It will, however, respect the writing style of the authors. When necessary, conceptual changes, corrections, or suggestions will be forwarded to the authors. In such cases, the manuscript shall be subjected to a new evaluation after revision. Responsibility for the opinions expressed in the manuscripts lies entirely with the authors.
This journal is licensed with a license Creative Commons Attribution-NonCommercial 4.0 International.
Funding data
-
Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão
Grant numbers BM-06193/22 -
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Grant numbers 001