A Hybrid Model for Cellular Dynamics in Colorectal Crypts

A Hybrid Model for Cellular Dynamics in Colorectal Crypts

Authors

DOI:

https://doi.org/10.5433/1679-0375.2025.v46.53590

Keywords:

colon crypt, partial differential equations, tessellation, cell proliferation and differentiation, finite element method

Abstract

Colorectal cancer is believed to originate from abnormal cell proliferation in small cavities of its epithelium called crypts. We present a hybrid framework that couples a Voronoi tessellation-based cell model with a continuous differential model to describe cellular dynamics, proliferation, and differentiation in a colorectal crypt. The framework is implemented numerically using finite difference and finite element methods.
This~allows us to simulate how cells move, proliferate, and differentiate in normal and abnormal scenarios.
We consider in particular the normal homeostatic case for validating the framework, and simulate two abnormal scenarios where perturbations in cell distribution or proliferation are imposed. The benefit of such a hybrid model is that we can freely impose perturbations and show results for cellular dynamics, proliferation, and differentiation at two different scales: a macro continuous scale and a micro cell scale. This framework provides insights into how cell behavior changes under abnormal conditions and how crypt lesions and adenomas may originate from cellular dynamics perturbations.

Downloads

Download data is not yet available.

Author Biographies

Ítalo José Lima de Sousa, Universidade Estadual do Maranhão

Prof. Me., Department of Mathematics, UEMA, São Luís, MA, Brazil.
Substitute Professor of the Department of Mathematics and Informatics at the State University of Maranhão (UEMA), Brazil. Prof. at SEMED School, São Luís, MA, Brazil.

Giuseppe Romanazzi, Universidade Estadual de Campinas

Professor of the Department of Applied Mathematics of Universidade Estadual de Campinas UNICAMP 

References

Almet, A. A., Byrne, H. M., Maini, P., & Moulton, D. E. (2021). The role of mechanics in the growth and homeostasis of the intestinal crypt. Biomechanics and Modeling in Mechanobiology, (20), 585–608. https://doi.org/10.1007/s10237-020-01402-8

Alnæs, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C. N., Ring, J., Rognes, M. E., & Wells, G. N. (2015). The FEniCS Project Version 1.5. Archive of Numerical Software, 3(100), 9–23. https://doi.org/10.11588/ans.2015.100.20553

Asarian, L., Gloy, V., & Geary, N. (2012). Homeostasis. In V. Ramachandran (Ed.), Encyclopedia of Human Behavior (2nd ed., pp. 324–333). Academic Press.

Baker, A. M., Cereser, B., Melton, S., Fletcher, A. G., Rodriguez-Justo, M., Tadrous, P. J., Humphries, A., Elia, G., McDonald, S. A., Wright, N. A., Simons, B. D., Jansen, M., & Graham, T. A. (2014). Quantification of crypt and stem cell evolution in the normal and neoplastic human colon. Cell Reports, 8(4), 940–947. https://doi.org/10.1016/j.celrep.2014.07.019

Bernstein, C., Facista, A., Nguyen, H., Zaitlin, B., Hassounah, N., Loustaunau, C., Payne, C. M., Banerjee, B., Goldschmid, S., Tsikitis, V. L., Krouse, R., & Bernstein, H. (2010). Cancer and age related colonic crypt deficiencies in cytochrome c oxidase I. World Journal of Gastrointestinal Oncology, 2(12), 429–442. https://doi.org/10.4251/wjgo.v2.i12.429

Chandrasinghe, P. C. (2018). Basics in molecular evolution of colorectal cancer and their implications for the surgeon: is it a ’big-bang’ or a ’survival of the toughest’? The Sri Lanka Journal of Surgery, 36(2), 18–21. https://doi.org/10.4038/sljs.v36i2.8511

Di Garbo, A., Johnston, M. D., Chapman, S. J., & Maini, P. K. (2010). Variable renewal rate and growth properties of cell populations in colon crypts. Physical Review E, 81(6), 061909. https://doi.org/10.1103/PhysRevE.81.061909

Drasdo, D., & Loeffler, M. (2001). Individual-based models to growth and folding in one-layered tissues: Intestinal crypts and early development. Nonlinear Analysis: Theory, Methods & Applications, 47(1), 245–256. https://doi.org/10.1016/S0362-546X(01)00173-0

Figueiredo, I. N., Leal, C., Romanazzi, G., & Engquist, B. (2019). Biomathematical model for simulating abnormal orifice patterns in colonic crypts. Mathematical Biosciences, 315, 108221. https://doi.org/10.1016/j.mbs.2019.108221

Greenspan, H. P. (1976). On the growth and stability of cell cultures and solid tumors. Journal of Theoretical Biology, 56(1), 229–242. https://doi.org/10.1016/S0022-5193(76)80054-9

Guebel, D. V., & Torres, N. V. (2008). A computer model of oxygen dynamics in human colon mucosa: Implications in normal physiology and early tumor development. Journal of Theoretical Biology, 250(3), 389–409. https://doi.org/10.1016/j.jtbi.2007.09.035

Kershaw, S. K., Byrne, H. M., Gavaghan, D. J., & Osborne, J. M. (2013). Colorectal cancer through simulation and experiment. IET Systems Biology, 7(3), 57–73. https://doi.org/10.1049/iet-syb.2012.0019

Meineke, F. A., Potten, C. S., & Loeffler, M. (2001). Cell migration and organization in the intestinal crypt using a lattice-free model. Cell Proliferation. https://doi.org/10.1046/j.0960-7722.2001.00216.x

Murray, P. J., Walter, A., Fletcher, A. G., Edwards, C. M., Tindall, M. J., & Maini, P. K. (2011). Comparing a discrete and continuum model of the intestinal crypt. Physical Biology, 8(2), 026011.

Nicolas, P., Kim, K. M., Shibata, D., & Tavaré, S. (2007). The stem cell population of the human colon crypt: Analysis via methylation patterns. PLoS Computational Biology, 3(3), e28. https://doi.org/10.1371/journal.pcbi.0030028

Oliveira, E. P., & Romanazzi, G. (2022). Modeling and computer simulation of viscoelastic crypt deformation. Trends in Computational and Applied Mathematics, 23(1), 193–211. https://doi.org/10.5540/tcam.2022.023.01.00193

Osborne, J. M. (2015). A multiscale model of colorectal cancer using the cellular Potts framework. Cancer Informatics, 14, 83–93. https://doi.org/10.4137/CIN.S193

Potten, C. S., Kellett, M., Roberts, S. A., Rew, D. A., & Wilson, G. D. (1992). Measurement of in vivo proliferation in human colorectal mucosa using bromodeoxyuridine. Gut, 33(1), 71–78. https://doi.org/10.1136/gut.33.1.71

Python Software Foundation. (2024). Python Language Reference, Version 3.2. https://www.python.org/download/releases/3.2/

Romanazzi, G., & Settanni, G. (2022). Mathematical Model for Simulation of Morphological Changes associated to Crypt Fission in the Colon. Discrete and Continuous Dynamical Systems - Series S, 15(12), 3781–3805. https://doi.org/10.3934/dcdss.2022055

Sousa, I. J. L. (2024). Modelos Celulares nas Criptas do Cólon: Análise e Implementação Numérica [Dissertação de Mestrado, Universidade Estadual de Campinas]. Repositório Institucional. https://doi.org/10.47749/T/UNICAMP.2024.1408687

van Leeuwen, I. M., Mirams, G., Walter, A., Fletcher, A., Murray, P., Osborne, J., Varma, S., Young, S., Cooper, J., Doyle, B., et al. (2009). An integrative computational model for intestinal tissue renewal. Cell Proliferation, 42(5), 617–636. https://doi.org/10.1111/j.1365-2184.2009.00627.x

van Leeuwen, I. M. M., Byrne, H. M., Jensen, O. E., & King, J. R. (2006). Crypt dynamics and colorectal cancer: Advances in mathematical modelling. Cell Proliferation, 39(3), 157–181. https://doi.org/10.1111/j.1365-2184.2006.00378.x

Downloads

Published

2025-12-12

How to Cite

Sousa, Ítalo J. L. de, & Romanazzi, G. (2025). A Hybrid Model for Cellular Dynamics in Colorectal Crypts. Semina: Ciências Exatas E Tecnológicas, 46, e53590. https://doi.org/10.5433/1679-0375.2025.v46.53590

Issue

Section

Biomathematics (Special section)
Loading...