Health Risk of Particulate Matter in Canoas and Paulínia for the Population Aged 30 to 59 Years

Health Risk of Particulate Matter in Canoas and Paulínia for the Population Aged 30 to 59 Years

Authors

DOI:

https://doi.org/10.5433/1679-0375.2025.v46.52130

Keywords:

air pollution, mortality, AirQ+, PM10

Abstract

Particulate matter, such as PM10, poses a threat to health and the environment. This study assessed the health impacts associated with the average annual PM concentrations in Canoas, Rio Grande do Sul, and Paulínia, São Paulo, from 2010 to 2019, comparing them to World Health Organization (WHO) guidelines. Air pollution is a global concern due to its {association} with respiratory diseases. Computational tools such as AirQ+ and Openair (R programming language) are essential for linking health and pollution data. The analyses showed a decrease in PM10 concentrations over time according to the Theil-Sen test. In Canoas, a significant reduction (p-value < 0.01) of 2.18 µg. m-3 per year was observed, while in Paulínia a reduction of 0.35 µg. m-3 per year was not significant (p-value > 0.10) and still remained above the 15 µg. m-3 recommended by the WHO. The relative risk calculation estimated that with this reduction, 4,367 and 2,351 health events could have been avoided in Canoas and Paulínia, respectively. These data highlight the need for policies to improve air quality and protect public health.

Downloads

Download data is not yet available.

Author Biographies

Bianca Cristina dos Reis Pinto, Universidade Estadual de Campinas (UNICAMP)

Undergraduate Student in Environmental Engineering, School of Technology (FT), UNICAMP, Limeira, SP, Brazil.

Julia Marly Pinheiro Americo, Universidade Estadual de Campinas (UNICAMP)

Undergraduate student in Environmental Engineering, School of Technology (FT), UNICAMP, Limeira, SP, Brazil.

Danilo Covaes Nogarotto, Universidade Estadual de Campinas (UNICAMP)

Collaborating Researcher, School of Technology (FT), UNICAMP, Limeira, SP, Brazil.

Daniela Montanari Migliavacca Osório, Universidade Estadual de Campinas (UNICAMP)

Collaborating Researcher, School of Technology (FT), UNICAMP, Limeira, SP, Brazil.

Simone Andréa Pozza, Universidade Estadual de Campinas (UNICAMP)

Professor (PhD), School of Technology (FT), UNICAMP, Limeira, SP, Brazil.

References

Abdolahnejad, A., Jafari, N., Mohammadi, A., Miri, M., Hajizadeh, Y., & Nikoonahad, A. (2017). Cardiovascular, respiratory, and total mortality ascribed to PM10 and PM2.5 exposure in Isfahan, Iran. Journal of Education and Health Promotion, 6(1), 1–6. https://pubmed.ncbi.nlm.nih.gov/29296610/ DOI: https://doi.org/10.4103/jehp.jehp_166_16

Al-Hemoud, A., Gasana, J., Al-Dabbous, A., A. N. anad Al-Shatti, & Al-Khayat, A. (2018). Disability adjusted life years (DALYs) in terms of years of life lost (YLL) due to premature adult mortalities and postneonatal infant mortalities attributed to PM2.5 and PM10 exposures in Kuwait. International Journal of Environmental Research and Public Health, 15(11), 2609. https://doi.org/10.3390/ijerph15112609 DOI: https://doi.org/10.3390/ijerph15112609

Almeida, R. P. S., Souza, T. C., Souza, S. L. Q., Martins, E. M., & Corrêa, S. M. (2019). Comparação da Qualidade do Ar em Localidades Industrial e Urbana. Revista Internacional de Ciências, 9(3), 47–62. https://doi.org/10.12957/ric.2019.42897 DOI: https://doi.org/10.12957/ric.2019.42897

Alves, D. D., Riegel, R. P., Klauck, C. R., Ceratti, A. M., Hansen, J., Cansi, L. M., Pozza, S. A., de Quevedo, D. M., & Osório, D. M. M. (2020). Source apportionment of metallic elements in urban atmospheric particulate matter and assessment of its water-soluble fraction toxicity. Environmental Science and Pollution Research, 27, 12202–12214. https://doi.org/10.1007/s11356-020-07791-8 DOI: https://doi.org/10.1007/s11356-020-07791-8

Amini, H., Yousefian, F., Faridi, S., Andersen, Z. J., Calès, E., Castro, A., Cervantes-Martínez, K., Cole-Hunter, T., Correia, M., Dragić, N., Evangelopoulos, D., Gapp, C., Hassanvand, M. S., Kim, I., Le Tertre, A., Medina, S., Miller, B., Montero, S., Requia, W. J., . . . Mudu, P. (2024). Two decades of air pollution health risk assessment: Insights from the use of WHO’s AirQ and AirQ+ tools. Public Health Reviews, 45, 1600699. https://doi.org/10.3389/phrs.2024.1606969 DOI: https://doi.org/10.3389/phrs.2024.1606969

Ancelet, T., Davy, P. K., & Trompetter, W. J. (2015). Particulate matter sources and long-term trends in a small New Zealand City. Atmospheric Pollution Research, 6(6), 1105–1112. https://doi.org/10.1016/j.apr.2015.06.008 DOI: https://doi.org/10.1016/j.apr.2015.06.008

Andreão, W. L., Albuquerque, T., & Kumar, P. (2018). Excess deaths associated with fine particulate matter in Brazilian cities. Atmospheric Environment, 194, 71–81. https://doi.org/10.1016/j.atmosenv.2018.09.034 DOI: https://doi.org/10.1016/j.atmosenv.2018.09.034

Arregocés, H. A., Rojano, R., & Restrepo, G. (2023). Health risk assessment for particulate matter: application of AirQ+ model in the northern Caribbean region of Colombia. Air Quality, Atmosphere and Health, 16(5), 897–912. https://doi.org/10.1007/s11869-023-01304-5 DOI: https://doi.org/10.1007/s11869-023-01304-5

Bennett, J. E., Kontis, V., Mathers, C. D., Guillot, M., Rehm, J., Chalkidou, K., & Ezzati, M. (2018). NCD Countdown 2030: worldwide trends in non-communicable disease mortality and progress towards Sustainable Development Goal target 3.4. The Lancet, 392(10152), 1072–1088. https://doi.org/10.1016/S0140-6736(18)31992-5 DOI: https://doi.org/10.1016/S0140-6736(18)31992-5

Carslaw, D. C. (2015). The openair manual: open-source tools for analysing air pollution data. Manual for version 1.1-4. King’s College London.

Carslaw, D. C., & Ropkins, K. (2012). Openair—An R package for air quality data analysis. Environmental Modelling & Software, 27-28, 52–61. https://doi.org/10.1016/j.envsoft.2011.09.008 DOI: https://doi.org/10.1016/j.envsoft.2011.09.008

Ceratti, A. M., da Costa, G. M., Alves, D. D., Cansi, L. M., Hansen, J., Brochier, F., de Quevedo, D. M., & Osorio, D. M. M. (2021). Polycyclic aromatic hydrocarbons (PAH) in atmospheric particles (PM2.5 and PM2.5−10): Integrated evaluation of the environmental scenario in urban areas. Water, Air, and Soil Pollution, 232(1), 6. https://doi.org/10.1007/s11270-020-04967-3 DOI: https://doi.org/10.1007/s11270-020-04967-3

Climate-Data. (2025). Climate: Brazil. https://en.climate-data.org/south-america/brazil-114/ DOI: https://doi.org/10.21552/cclr/2025/2/9

Companhia Ambiental do Estado de São Paulo. (2012). Operação Inverno 2011: qualidade do ar. CETESB. https://repositorio.cetesb.sp.gov.br/items/b5208dbf-165c-43e1-9b78-8e8fb7c5d777/full

Companhia Ambiental do Estado de São Paulo. (2021). Endereços das Estações das Redes de Monitoramento da Qualidade do Ar. CETESB. https://repositorio.cetesb.sp.gov.br/bitstreams/0c6fbd73-84c0-4d90-88bb-81dd15fac677/download

Conselho Nacional do Meio Ambiente. (2018). Resolução Conama n° 491/2018. Dispõe sobre padrões de qualidade do ar. Conama. https://www.legisweb.com.br/legislacao/?id=369516

Conselho Nacional do Meio Ambiente. (2024). Resolução Conama n° 506, de 5 de julho de 2024. Estabelece padrões nacionais de qualidade do ar e fornece diretrizes para sua aplicação. Conama.

Corá, B., Leirião, L., & Miraglia, S. (2020). Impacto da poluição do ar na saúde pública em municípios de alta industrialização do estado de São Paulo. Brazilian Journal of Environmental Sciences, 55(4), 498–509. https://doi.org/10.5327/Z2176-947820200671 DOI: https://doi.org/10.5327/Z2176-947820200671

Fallahizadeh, S., Kermani, M., Esrafili, A., Asadgol, Z., & Gholami, M. (2021). The effects of meteorological parameters on PM10: Health impacts assessment using AirQ+ model and prediction by an artificial neural network (ANN). Urban Climate, 38, 100905. https://doi.org/10.1016/j.uclim.2021.100905 DOI: https://doi.org/10.1016/j.uclim.2021.100905

Fernandes, M. A. O., Andreão, W. L., Maciel, F. M., & Albuquerque, T. T. A. (2020). Avoiding hospital admissions for respiratory system diseases by complying to the final Brazilian air quality standard: An estimate for Brazilian southeast capitals. Environmental Science and Pollution Research, 27, 35889–35907. https://doi.org/10.1007/s11356-020-07772-x DOI: https://doi.org/10.1007/s11356-020-07772-x

Fundação Estadual de Proteção Ambiental. (2024). Monitoramento da Qualidade do Ar. https://www.fepam.rs.gov.br/monitoramento-da-qualidade-do-ar

Gama, C., Monteiro, A., Pio, C., Miranda, A., Baldasano, J., & Tchepel, O. (2018). Temporal patterns and trends of particulate matter over Portugal: a long-term analysis of background concentrations. Air Quality, Atmosphere & Health, 11, 390–407. https://doi.org/10.1007/s11869-018-0546-8 DOI: https://doi.org/10.1007/s11869-018-0546-8

Gharehchahi, E., Mahvi, A. H., Amini, H., Nabizadeh, R., Akhlaghi, A. A., & Shamsipour, M. (2013). Health impact assessment of air pollution in Shiraz, Iran: A two-part study. Journal of Environmental Health Science and Engineering, 11(11), 1–8. https://doi.org/10.1186/2052-336X-11-11 DOI: https://doi.org/10.1186/2052-336X-11-11

Gholampour, A., Nabizadehr, N. S., Yunesianm, T. H., Rastkari, N., Nazmara, S., Faridi, S., & Mahvi, A. H. (2014). Exposure and health impacts of outdoor particulate matter in two urban and industrialized areas of Tabriz, Iran. Journal of Environmental Health Science and Engineering, 12(27), 1–10. https://doi.org/10.1186/2052-336X-12-27 DOI: https://doi.org/10.1186/2052-336X-12-27

Gonçalves, P. B., Eulalio, J. C. D., Rufino, R. C., Nogarotto, D. C., & Pozza, S. A. (2024). Incidência de doenças respiratórias pela exposição ao material particulado atmosférico em três municípios de médio porte. Cadernos Técnicos de Engenharia Sanitária e Ambiental, 4(1), 3–12. https://doi.org/10.5327/276455760401001 DOI: https://doi.org/10.5327/276455760401001

Gonçalves, P. B., Nogarotto, D. C., Canteras, F. B., & Pozza, S. A. (2022). The relationship between the number of COVID-19 cases, meteorological variables, and particulate matter concentration in a medium-sized Brazilian city. Brazilian Journal of Environmental Sciences, 57(1), 167–178. https://doi.org/10.5327/Z217694781300 DOI: https://doi.org/10.5327/Z217694781300

Gou, A., Zhu, X., Ding, X., Wang, J., Gou, C., Tan, Q., & Lv, X. (2024). Spatial association between chronic respiratory disease mortality rates and industrial manufacturing enterprises: A case study of Chongqing, China. Sustainable Cities and Society, 113, 105720. https://doi.org/10.1016/j.scs.2024.105720 DOI: https://doi.org/10.1016/j.scs.2024.105720

Gouveia, N., Corrallo, F. P., Ponce de Leon, A. C., Junger, W., & Freitas, C. U. (2017). Poluição do ar e hospitalizações na maior metrópole brasileira. Revista de Saúde Pública, 51, 117. https://doi.org/10.11606/s1518-8787.2017051000223 DOI: https://doi.org/10.11606/S1518-8787.2017051000223

Gouveia, N., & Junger, W. L. (2018). Effects of air pollution on infant and children respiratory mortality in four large Latin-American cities. Environmental Pollution, 232, 385–391. https://doi.org/10.1016/j.envpol.2017.08.125 DOI: https://doi.org/10.1016/j.envpol.2017.08.125

Instituto Brasileiro de Geografia e Estatística. (2022). Cidades e Estados do Brasil. IBGE. https://cidades.ibge.gov.br/

Instituto de Pesquisa Econômica Aplicada. (2022). Atlas da vulnerabilidade socioambiental: impactos das mudanças climáticas na saúde humana nas cidades brasileiras. Brasília: Ipea. https://www.ipea.gov.br

Jeong, S. J. (2013). The Impact of Air Pollution on Human Health in Suwon City. Asian Journal of Atmospheric Environment, 7(4), 227–233. https://doi.org/10.5572/ajae.2013.7.4.227 DOI: https://doi.org/10.5572/ajae.2013.7.4.227

Khaniabadi, Y. O., Fanelli, R., De Marco, A., Daryanoosh, S. M., Kloog, I., Hopke, P. K., Conti, G. O., Ferrante, M., & Mohammadi, M. J. (2017). Hospital admissions in Iran for cardiovascular and respiratory diseases attributed to the middle eastern dust storms. Environmental Science and Pollution Research, 24, 16860–16868. https://doi.org/10.1007/s11356-017-9298-5 DOI: https://doi.org/10.1007/s11356-017-9298-5

Khaniabadi, Y. O., Goudarzi, G., Daryanoosh, S. M., Borgini, A., Tittarelli, A., & De Marco, A. (2017). Exposure to PM10, NO2, and O3 and impacts on human health. Environmental Science and Pollution Research, 24, 2781–2789. https://doi.org/10.1007/s11356-016-8038-6 DOI: https://doi.org/10.1007/s11356-016-8038-6

Lund, J. L., Richardson, D. B., & Stürmer, T. (2016). The active comparator, new user study design in pharmacoepidemiology: historical foundations and contemporary application. Current Epidemiology Reports, 3(4), 297–305. https://doi.org/10.1007/s40471-015-0053-5 DOI: https://doi.org/10.1007/s40471-015-0053-5

Manojkumar, N., & Srimuruganandam, B. (2021). Health effects of particulate matter in major Indian cities. International Journal of Environmental Health Research, 31(3), 258–270. https://doi.org/10.1080/09603123.2019.1651257 DOI: https://doi.org/10.1080/09603123.2019.1651257

Marín, D., Herrera, V., Piñeros-Jiménez, J. G., Rojas Sánchez, O. A., Mangones, S. C., Rojas, Y., Cáceres, J., Agudelo-Castañeda, D. M., Rojas, N. Y., Belalcazar-Ceron, L. C., Ochoa Villegas, J., Montes Mejía, M. L., Lopera-Velasquez, V. M., Castillo-Navarro, S. M., Torres-Prieto, A., Baumgartner, J., & Rodríguez-Villamizar, L. A. (2025). Longterm exposure to PM2.5 and cardiorespiratory mortality: An ecological smallarea study in five cities in Colombia. Cadernos de Saúde Pública, 41(4), e00071024. https://doi.org/10.1590/0102-311XEN071024 DOI: https://doi.org/10.1590/0102-311xen071024

Marinho, L. V., Nogarotto, D. C., & Pozza, S. A. (2022). Análise de tendência de concentração de material particulado atmosférico e efetividade de políticas públicas. Holos Environment, 22(2), 78–93. https://doi.org/10.14295/holos.v22i2.12470 DOI: https://doi.org/10.14295/holos.v22i2.12470

Martins, E. H., Eicardi, M. S., Nogarotto, D. C., & Pozza, S. A. (2025). Health and economic benefits of lowering particulate matter (PM) levels: Scenarios for a southern Brazilian metropolis. Aerosol Science and Engineering, 5, 91–112. https://doi.org/10.1007/s41810-024-00239-3 DOI: https://doi.org/10.1007/s41810-024-00239-3

Mateus, V. L., & Gioda, A. (2017). A candidate framework for PM2.5 source identification in highly industrialized urban-coastal areas. Atmospheric Environment, 164, 147–164. https://doi.org/10.1016/j.atmosenv.2017.05.025 DOI: https://doi.org/10.1016/j.atmosenv.2017.05.025

Miranda, A., Silveira, C., Ferreira, J., Monteiro, A., Lopes, D., Relvas, H., Borrego, C., & Roebeling, P. (2015). Current air quality plans in Europe designed to support air quality management policies. Atmospheric Pollution Research, 6(3), 434–443. https://doi.org/10.5094/APR.2015.048 DOI: https://doi.org/10.5094/APR.2015.048

Moustris, K. P., Ntourou, K., & Nastos, P. T. (2017). Estimation of particulate matter impact on human health within the urban environment of Athens City, Greece. Urban Science, 1(1), 6. https://doi.org/10.3390/urbansci1010006 DOI: https://doi.org/10.3390/urbansci1010006

Nogarotto, D., Lima, M., & Pozza, S. (2020). Análise de componentes principais para verificar relação entre variáveis meteorológicas e a concentração de PM10. Holos, 36(1), 1–17. https://doi.org/10.15628/holos.2020.8649 DOI: https://doi.org/10.15628/holos.2020.8649

Nourmoradi, H., Goudarzi, G., Daryanoosh, S. M., Omidi-Khaniabadi, F., Jourvand, M., & Omidi-Khaniabadi, Y. A. (2015). Health impacts of particulate matter in air using AirQ model in Khorramabad city, Iran. Journal of Basic Research in Medical Sciences, 2(2). http://jbrms.medilam.ac.ir/article-1-157-en.html

Organization, W. H. (2021). A call for standardised age-disaggregated health data. Bulletin of the World Health Organization, 99(1), 3–3A.

Ostro, B. (2004). Outdoor air pollution: assessing the environmental burden of disease at national and local levels. Organização Mundial da Saúde, Occupational and Environmental Health Team. https://apps.who.int/iris/handle/10665/42909

Petrobrás. (2021). Petróleo Brasileiro S.A. https://www.petrobras.com.br

Petrobrás. (2025). Refinaria de Paulínia. https://petrobras.com.br/quem-somos/refinaria-de-paulinia

Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA, 287(9), 1132–1141. https://doi.org/10.1001/jama.287.9.1132 DOI: https://doi.org/10.1001/jama.287.9.1132

R Core Team. (2023). The R Project for Statistical Computing. https://www.r-project.org/

Raji, H., Riahi, A., Borsi, S. H., Masoumi, K., Khanjani, N., AhmadiAngali, K., Goudarzi, G., & Dastoorpoor, M. (2020). Acute Effects of Air Pollution on Hospital Admissions for Asthma, COPD, and Bronchiectasis in Ahvaz, Iran. International Journal of Chronic Obstructive Pulmonary Disease, 15, 501–514. https://doi.org/10.2147/COPD.S231317 DOI: https://doi.org/10.2147/COPD.S231317

Rovira, J., Domingo, J. L., & Schuhmacher, M. (2020). Air quality, health impacts and burden of disease due to air pollution (PM10, PM2.5, NO2 and O3): Application of AirQ+ model to the Camp de Tarragona County (Catalonia, Spain). Science of The Total Environment, 703, 135538. https://doi.org/10.1016/j.scitotenv.2019.135538 DOI: https://doi.org/10.1016/j.scitotenv.2019.135538

São Paulo. Governo do Estado. (2013). Decreto nº 59.113, de 23 de abril de 2013. Estabelece novos padrões de qualidade do ar e dá providências correlatas. https://www.al.sp.gov.br/repositorio/legislacao/decreto/2013/decreto-59113-23.04.2013.html

Sasmita, S., Kumar, D. B., & Priyadharshini, B. (2022). Assessment of sources and health impacts of PM10 in an urban environment over eastern coastal plain of India. Environmental Challenges, 7, 100457. https://doi.org/10.1016/j.envc.2022.100457 DOI: https://doi.org/10.1016/j.envc.2022.100457

Seinfeld, J. H., & Pandis, S. N. (2006). Chemistry and physics of air pollution: From air pollution to climate change (2nd ed.). Scientific Research An Academic Publisher. https://doi.org/10.4236/ahs.2015.44023 DOI: https://doi.org/10.4236/ahs.2015.44023

Sharma, S., Singhal, A., Venkatramanan, V., Verma, P., & Pandey, M. (2024). Variability in air quality, ozone formation potential by VOCs, and associated air pollution attributable health risks for Delhi’s inhabitants. Environmental Science: Atmospheres, 4(8), 897–910. https://doi.org/10.1039/d4ea00064a DOI: https://doi.org/10.1039/D4EA00064A

Sokoty, L., Kermani, M., Janani, L., Dowlati, M., Hassanlouei, B., & Rimaz, S. (2020). Estimation of cardiovascular and respiratory diseases attributed to PM10 using AirQ model in Urmia during 2011-2017. Medical Journal of The Islamic Republic of Iran, 34, 60. https://doi.org/10.47176/mjiri.34.60 DOI: https://doi.org/10.47176/mjiri.34.60

Tavella, R. A., de Moura, F. R., Miraglia, S. G. E. K., & Silva, F. M. R., Jr. (2024). A New Dawn for Air Quality in Brazil. The Lancet Planetary Health, 8(10), e717–e718. https://doi.org/10.1016/S2542-5196(24)00203-1 DOI: https://doi.org/10.1016/S2542-5196(24)00203-1

Tavella, R. A., Silva, F. M. R., Jr., Santos, M. A., Miraglia, S. G. E. K., & Pereira, R. D., Filho. (2025). A Review of Air Pollution from Petroleum Refining and Petrochemical Industrial Complexes: Sources, Key Pollutants, Health Impacts, and Challenges. ChemEngineering, 9(1), 13. https://doi.org/10.3390/chemengineering9010013 DOI: https://doi.org/10.3390/chemengineering9010013

Tornevi, A., Olstrup, H., & Forsberg, B. (2022). Short-term associations between PM10 and respiratory health effects in Visby, Sweden. Toxics, 10(6), 333. https://doi.org/10.3390/toxics10060333 DOI: https://doi.org/10.3390/toxics10060333

Vormittag, E. M. P. A., Cirqueira, S. S. R., Wicher, N. H., & Saldiva, P. H. N. (2021). Análise do monitoramento da qualidade do ar no Brasil. Estudos Avançados, 35(102), 7–30. https://doi.org/10.1590/s0103-4014.2021.35102.002 DOI: https://doi.org/10.1590/s0103-4014.2021.35102.002

Wang, W., Liu, C., Ying, Z., Lei, X., Wang, C., Huo, J., Zhao, Q., Zhang, Y., Duan, Y., Chen, R., Fu, Q., Zhang, H., & Kan, H. (2019). Particulate air pollution and ischemic stroke hospitalization: how the associations vary by constituents in Shanghai, China. Journal of Environmental Health Science and Engineering, 695, 1–8. https://doi.org/10.1016/j.scitotenv.2019.133780 DOI: https://doi.org/10.1016/j.scitotenv.2019.133780

Wikuats, C. F. H., Nogueira, T., Squizzato, R., Freitas, E. D., & Andrade, M. F. (2023). Health Risk Assessment of Exposure to Air Pollutants Exceeding the New WHO Air Quality Guidelines (AQGs) in São Paulo, Brazil. International Journal of Environmental Research and Public Health, 20(9), 5707. https://doi.org/10.3390/ijerph20095707 DOI: https://doi.org/10.3390/ijerph20095707

World Health Organization. (2016). AirQ+: Main Features. World Health Organization. https://www.who.int/europe/publications/i/item/WHO-EURO-2016-4104-43863-61761

World Health Organization. (2021). WHO global air quality Guidelines. World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/345329/9789240034228-eng.pdf?sequence=1&isAllowed=y

World Health Organization. (2023). Global Health Statistics: Health Monitoring for the SDGs, Sustainable Development Goals. World Health Organization. https://www.who.int/publications/i/item/9789240074323

Zhang, X., Fung, J. C. H., Lau, A. K. H., Hossain, M. S., Louie, P. K. K., & Huang, W. (2021). Air quality and synergistic health effects of ozone and nitrogen oxides in response to China’s integrated air quality control policies during 2015–2019. Chemosphere, 268, 129385. https://doi.org/10.1016/j.chemosphere.2020.129385 DOI: https://doi.org/10.1016/j.chemosphere.2020.129385

Downloads

Published

2025-09-23

How to Cite

Pinto, B. C. dos R., Americo, J. M. P., Nogarotto, D. C., Osório, D. M. M., & Pozza, S. A. (2025). Health Risk of Particulate Matter in Canoas and Paulínia for the Population Aged 30 to 59 Years. Semina: Ciências Exatas E Tecnológicas, 46, e52130. https://doi.org/10.5433/1679-0375.2025.v46.52130

Issue

Section

Engineerings
Loading...