Theoretical Analysis of Growth and Collapse of Spherical Cavities

Theoretical Analysis of Growth and Collapse of Spherical Cavities

Authors

DOI:

https://doi.org/10.5433/1679-0375.2025.v46.51616

Keywords:

cavities , collapse, conical, growth, cavitation

Abstract

In the present study, the analytical equations of conical functions are used to describe the growth and collapse of vapor and spherical cavities in liquids (cavitation). The equations describing the expansion of the spherical finite universe from the cosmological models are also applied to the study of growth and collapse of vapor and air cavities within liquids. The relative simple method used here has the advantage of prescinding numerical and/or computational simulations and other methods. Although the differences between the results of the adiabatic collapse and the isothermal collapse are very small, according to the literature. The hypothesis of the isothermal collapse of the bubble is used and justified based on the concept of characteristic time for heat transfers. Consequently, available theoretical and experimental data for isothermal collapse of such cavities are also used and, in the sequence, adjusted to polynomial equations. These were used to describe the radius as a function of time during the collapse and growth of the cavities. An auxiliary function was used here with the time variable, resulting in a linear function of it. The results are presented in graphs showing the bubble radius as a function of time, for collapse or growth of the cavity, or bubble.

Downloads

Download data is not yet available.

Author Biographies

Gil Bazanini, Universidade do Estado de Santa Catarina

Department of Mechanical Engineering, UDESC, Joinville, SC, Brazil.

Ricardo Kirchhof Unfer, Universidade do Estado de Santa Catarina

Department of Industrial Technology, UDESC, São Bento do Sul, SC, Brazil.

References

Acosta, V., Cowam, C. L., & Graham, B. J. (1975). Curso de Física Moderna. Harla.

Bazanini, G. (2017). Cavitation Erosion Pits and Craters in Metals. Semina: Ciências Exatas e Tecnológicas, 38(2), 43-49. https://doi.org/10.5433/1679-0375.2017v38n2p43 DOI: https://doi.org/10.5433/1679-0375.2017v38n2p43

Bazanini, G., Barbosa, A. F. J., & Lima, N. N. C. (2017). Erosion and Corrosion by Micro - jets and High Temperature Cavity Impaction on Metal Surfaces. In COBEF, [Proceedings]. 9th Brazilian Congress on Manufacturing Engineering, Joinville, Brazil.

Bazanini, G., Bezerra, V. B., & Silans, A. M. B. P. (1999). The Influence of Physical Properties in Bubble Collapse and Pressure Field in Liquids. Acta Scientiarum, 21(4), 773-778.

Bazanini, G., & Bressan, J. D. (2017). Hot Vapor Bubble Prints on Carbon Steel. Journal of Applied Mathematics and Physics, 5, 439-448. https://doi.org/10.4236/jamp.2017.52038 DOI: https://doi.org/10.4236/jamp.2017.52038

Bazanini, G., & Hoays, S. H. (2008). Oscilações de cavidades na forma adimensionalizada. In Associação Brasileira de Engenharia e Ciências Mecânicas. Anais [Anais]. 1º Encontro Brasileiro Sobre Ebulição, Condensação e Escoamento Multifásico Líquido-Gás. Florianópolis, Brasil.

Bazanini, G., Lima, N. N. C., & Bressan, J. D. (2018). Cavitaties "Pit Number" and Micro-Jets Impingements. Semina: Ciências Exatas e Tecnológicas, 39(2), 81-86. https : / /doi.org/10.5433/1679- 0375. 2018v39n2p81 DOI: https://doi.org/10.5433/1679-0375.2018v39n2p81

Bistafa, S. R., & Bazanini, G. (1997). Modelagem Numérica do Colapso de Cavidades em Meios Líquidos. In Escola Federal de Engenharia de Itajubá-Grupo de Energia, Anais [Anais]. 4º Encontro Latino Americano de Fluidomecânica. Itajubá, Brasil. https://repositorio.usp.br/item/000923702

Chorlton, F. (1967). Textbook of Fluid Dynamics. Van Nostrand Company.

Dular, M., & Delgosha, O. C. (2012). Thermodynamic Effect at a Single Cavitation Bubble Growth and Collapse. In Research Publishing, Proceedings 8th International Symposium on Cavitation. [Proceedings]. 8th International Symposium on Cavitation, Singapore. DOI: https://doi.org/10.3850/978-981-07-2826-7_053

Frank, J. C., & Michel, J. P. (2005). Fundamentals of Cavitation. Kluwer Academic Publishers. DOI: https://doi.org/10.1007/1-4020-2233-6

Hammitt, F. G. (1980). Cavitation and Multiphase Flow Phenomena. McGraw-Hill.

Landau, L. D., & Lifshitz, E. M. (1959). Course of Theoretical Physics (Vol. 6: Fluid Mechanics). Pergamon Press.

Landau, L. D., & Lifshitz, E. M. (1980). Curso de Física Teórica (Vol. 2: Teoria do Campo). Editora Hemus.

Muller, M. A. S., Zima, P., & Unger, J. (2012). Energy Dissipated During the Cavitation Bubble Collapse Close to a Solid Wall. In Research Publishing, Proceedings 8th International Symposium on Cavitation. [Proceedings]. 8th International Symposium on Cavitation, Singapore. DOI: https://doi.org/10.3850/978-981-07-2826-7_259

Novello, M. (2023). Construtores do Cosmos. Editora Gaia.

Sinibaldi, G., Occhicone, A., Pereira, F. A., Caprini, D., Marino, L., Michelotti, F., & Casciola, C. M. (2018). Laser Induced Breakdown and Bubble Cavitation. In J. Katz (Ed.), CAV 2018 [Proceedings]. Proceedings 10th International Symposium on Cavitation. Maryland, USA. https://doi.org/10.1115/1.861851_ch129 DOI: https://doi.org/10.1115/1.861851_ch129

Supponen, O., Obreschkow, D., & Farhat, M. (2018). On the Rebounds of Spherical and Deformed Cavitation Bubbles. In J. Katz (Ed.), CAV 2018 [Proceedings]. Proceedings 10th International Symposium on Cavitation. Maryland, USA. https://doi.org/10.1115/1.861851_ch165 DOI: https://doi.org/10.1103/PhysRevFluids.3.103604

Venturi, J. J. (2003). Cônicas e Quádricas (5th ed.). Artes Gráficas e Editora Unificado.

Zhang, J., Yu, C., You, & Zhang, Y. (2017). Experimental Study and Numerical Simulation of Periodic Bubble Formation at Submerged Micron-Sized Nozzles with Constant Gas Flow Rate. Chemical Engineering Science, 168, 1-10. https://doi.org/10.1016/j.ces.2017.04.012 DOI: https://doi.org/10.1016/j.ces.2017.04.012

Zhong, X., Eshraghi, J., Vlachos, P., Dabiri, S., & Ardekani, A. M. (2021). A Model for a Laser-induced Cavitation Bubble. International Journal of Multiphase Flow, 132, 1-11. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103433 DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2020.103433

Downloads

Published

2025-06-24

How to Cite

Bazanini, G., & Unfer, R. K. (2025). Theoretical Analysis of Growth and Collapse of Spherical Cavities. Semina: Ciências Exatas E Tecnológicas, 46, e51616. https://doi.org/10.5433/1679-0375.2025.v46.51616

Issue

Section

Engineerings
Loading...