Characterization of Pictorial Materials of Two 18th Century Sculptures: King David and Bathsheba
DOI:
https://doi.org/10.5433/1679-0375.2023.v44.47972Keywords:
archaeometry, X-ray fluorescence, raman spectroscopy, baroque sculptureAbstract
In this {work}, the X-ray fluorescence technique was employed to characterize the pictorial materials used in two sculptures from the 18th. In addition, Raman spectroscopy was used to characterize the preparation layers used in the sculptures. {The analyzed sculptures} are carved in wood, with gilding and polychrome, and represent the biblical characters, Bathsheba, and King David. The sculptures are property of the Church of \textit{Nossa Senhora do Pilar}, in Duque de Caxias, RJ. XRF {analyzes} were performed using a portable ED-XRF system, which has a low-power X-ray tube (Amptek) with a silver target (Ag) and an SDD detector (Amptek). Raman spectroscopy {analyzes} were performed using the DXR2 Raman microscopy equipment (Thermo Fisher Scientific) with a 785 nm laser source. The results obtained from the XRF and Raman spectroscopy techniques suggest the presence of Gypsum, Calcite, Calcium Sulfate. In addition, the results obtained suggest the presence of the following pigments in the sculptures: Lead white, Titanium White, Lithopone, Ochre, Vermilion, Red Lead and gilding with gold leaf. The studies also showed that the Bathsheba sculpture was probably subjected to some processes of chromatic reintegration over the years due to the heterogeneity of pigments found in the same region
Downloads
References
Adriaens, A. (2005). Non-destructive analysis and testing of museum objects: An overview of 5 years of research. Spectrochimica Acta Part B, 60, 1503–1516. DOI: https://doi.org/10.1016/j.sab.2005.10.006
Ali, M. F., & Mansour, M. M. A. (2018). A study of biodeterioration and chromatic alterations of painted and gilded mummy cartonnage at the Saqqara Museum Storeroom, Egypt. Archaeometry, 60, 845–858. DOI: https://doi.org/10.1111/arcm.12340
Alves, M. (2021). Furtada há 47 anos, imagem de Rei Davi é recuperada pela Diocese de Duque de Caxias. Diário do Rio.
Barata, C., Carballo, J., António João Cruz, A. J., Coroado, J., Araújo, M. E., & Mendonça, M. H. (2013). Characterization by chemical analysis of Portuguese baroque polychrome wooden sculptures with erudite and popular features. Química Nova, 36(1), 21–26. DOI: https://doi.org/10.1590/S0100-40422013000100005
Bonizzoni, L., Bruni, S., Gargano, M., Guglielmi, V., Zaffino, C., Pezzotta, A., Pilato, A., Auricchio, T., Delvaux, L., & Ludwig, N. (2018). Use of integrated non-invasive analyses for pigment characterization and indirect dating of old restorations on one Egyptian coffin of the XXI dynasty. Microchemical Journal, 138, 122–131. DOI: https://doi.org/10.1016/j.microc.2018.01.002
Bruni, S., Cariati, F., Casadio, F., & Toniolo, L. (1999). Identification of pigments on a XV century illuminated parchment by Raman and FTIR microspectroscopies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 55(7-8), 1371–1377. DOI: https://doi.org/10.1016/S1386-1425(98)00300-X
Clark, R. J. H. (2002). Pigment identification by spectroscopic means: an arts/science interface. Comptes Rendus Chimie, 5, 7–20. DOI: https://doi.org/10.1016/S1631-0748(02)01341-3
Coccato, A., Jehlicka, J., Moens, L., & Vandenabeele, P. (2015). Raman spectroscopy for the investigation of carbon-based black pigments. Journal Of Raman Spectroscopy, 46(10), 1003–1015. DOI: https://doi.org/10.1002/jrs.4715
Coelho, B. R. V. (2005). Materiais, técnicas e conservação. In B. C. Coelho (org), Devoção e arte: Imaginária religiosa em Minas Gerais (pp. 233–245). Universidade de São Paulo.
Fabrino, R. J. H. (2012). Os Furtos de Obras de Arte Sacra em Igrejas Tombadas do Rio de Janeiro (1957-1995). [Dissertação de Mestrado, Instituto do Patrimônio Histórico e Artístico Nacional].
Felix, V. S., Mello, U. L., Pereira, M. O., Oliveira, A. L., Ferreira, D. S., Carvalho, C. S., Silva, F. L., Pimenta, A. R., Diniz, M. G., & Freitas, R. P. (2018). Analysis of a European cupboard by XRF, Raman and FT-IR. Radiation Physics And Chemistry, 151, 198–204. DOI: https://doi.org/10.1016/j.radphyschem.2018.06.036
Freitas, R. P., Ribeiro, I. M., Calza, C., Oliveira, A. L., Felix, V. S., Ferreira, D. S., Pimenta, A. R., Pereira, R. V., Pereira, M. O., & Lopes, R. T. (2016). Analysis of a Brazilian baroque sculpture using Raman spectroscopy and FT-IR. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 154, 67–71. DOI: https://doi.org/10.1016/j.saa.2015.10.013
Gulotta, D., Goidanich, S., Bertoldi, M., Bortolotto, S., & Toniolo, L. (2012). Gildings and false gildings of the baroque age: characterization and conservation problems. Archaeometry, 54, 940–954. DOI: https://doi.org/10.1111/j.1475-4754.2011.00658.x
Hradil, D., Janka Hradilová, J., Bezdička, P., & Serendan, C. (2017). Late Gothic/early Renaissance gilding technology and the traditional poliment material “Armenian bole”: Truly red clay, or rather bauxite? Applied Clay Science, 135, 271–281. DOI: https://doi.org/10.1016/j.clay.2016.10.004
Kontoyannis, C. G., & Vagenas, N. V. (2000). Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. Analyst, 125, 251–255. DOI: https://doi.org/10.1039/a908609i
Lauridsen, C. B., Sanyova, J., & Simonsen, K. P. (2014). Analytical study of modern paint layers on metal knight shields: The use and effect of Titanium white. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 124, 638–645. DOI: https://doi.org/10.1016/j.saa.2014.01.077
Le Gac, A., Seruya, A. I., Lefftz, M., & Alarcão, A. (2009). The main altarpiece of the Old Cathedral of Coimbra (Portugal): characterization of gold alloys used for gilding from 1500 to 1900. ArcheoSciences, revue d’archéométrie, 33, 423–432. DOI: https://doi.org/10.4000/archeosciences.2562
Palamara, E., Das, P. P., Nicolopoulos, S., Tormo Cifuentes, L., Kouloumpi, E., Terlixi, A., & Zacharias, N. (2021). Towards building a Cathodoluminescence (CL) database for pigments: characterization of white pigments. Heritage Science, 9, 1–14. DOI: https://doi.org/10.1186/s40494-021-00575-4
Prieto-Taboada, N., Gomez-Laserna, O., MartínezArkarazo, I., Olazabal, M. Á., & Madariaga, J. M. (2014). Raman spectra of the different phases in the CaSO4–H2O system. Analytical chemistry, 86(20), 10131–10137. DOI: https://doi.org/10.1021/ac501932f
Ricci, C., Borgia, I., Brunetti, B. G., Miliani, C., Sgamellotti, A., Seccaroni, C., & Passalacqua, P. (2004). The Perugino’s palette: integration of an extended in situ xrf study by raman spectroscopy. Journal Of Raman Spectroscopy, 35(89), 616–621. DOI: https://doi.org/10.1002/jrs.1131
Rodrigues, V. S., & Mello, I. S. (2020). Igreja Matriz de Nossa Senhora do Pilar - RJ. Boletim do Gerenciamento, 21(21), 1–12.
Sanches, F. A. C. R. A., Nardes, R. C., Santos, R. S., Netto, C. E. L., Freitas, R. P., Oliveira, D. F., Lopes, R. T., Leitão, C. C. G., & Anjos, M. J. (2022). Non-invasive characterization of the painting Saint John the Evangelist by means spectroscopic methods. Brazilian Journal of Radiation Sciences, 10(3), 1–14. DOI: https://doi.org/10.15392/2319-0612.2022.1964
Sawczak, M., Kamińska, A., Rabczuk, G., Ferretti, M., Jendrzejewski, R., & Śliwiński, G. (2009). Complementary use of the Raman and XRF techniques for non-destructive analysis of historical paint layers. Applied Surface Science, 255(10), 5542–5545. DOI: https://doi.org/10.1016/j.apsusc.2008.07.138
Solé, V. A., Papillon, E., Cotte, M., Walter, P., & Susini, J. (2007). A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochimica Acta Part B: Atomic Spectroscopy, 62, 63–68. DOI: https://doi.org/10.1016/j.sab.2006.12.002
Spring, M., & Gorout, R. (2002). The Blackening of Vermilion: An Analytical Study of the Process in Paintings. National Gallery Technical Bulletin, 23.
Tomasini, E. P., Halac, E. B., Reinoso, M., Liscia, E. J., & Maier, M. S. (2012). Micro-Raman spectroscopy of carbon-based black pigments. Journal Of Raman Spectroscopy, 43(11), 1671–1675. DOI: https://doi.org/10.1002/jrs.4159
Vandenabeele, P., & Donais, M. K. (2016). Mobile Spectroscopic Instrumentation in Archaeometry Research. Applied Spectroscopy, 70, 27–41. DOI: https://doi.org/10.1177/0003702815611063
Zuena, M., Baroni, L., Graziani, V., Iorio, M., Lins, S., Ricci, M. A., Ridolfi, S., Ruggiero, L., Tortora, L., & Valbonetti, L. (2021). The techniques and materials of a 16th century drawing by Giorgio Vasari: A multi-analytical investigation. Microchemical Journal, 170, 106757. DOI: https://doi.org/10.1016/j.microc.2021.106757
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Francis A. C. R. A. Sanches, Raysa C. Nardes, Ramon S. dos Santos, Roberta G. Leitão, Catarine C. G. Leitão, Joaquim T. Assis, Elanie T. de Gusmão, Ricardo T. Lopes, Davi F. de Oliveira, Marcelino J. dos Anjos
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Copyright Declaration for articles published in this journal is the author’s right. Since manuscripts are published in an open access Journal, they are free to use, with their own attributions, in educational and non-commercial applications. The Journal has the right to make, in the original document, changes regarding linguistic norms, orthography, and grammar, with the purpose of ensuring the standard norms of the language and the credibility of the Journal. It will, however, respect the writing style of the authors. When necessary, conceptual changes, corrections, or suggestions will be forwarded to the authors. In such cases, the manuscript shall be subjected to a new evaluation after revision. Responsibility for the opinions expressed in the manuscripts lies entirely with the authors.
This journal is licensed with a license Creative Commons Attribution-NonCommercial 4.0 International.
Funding data
-
Financiadora de Estudos e Projetos
Grant numbers 0113044402