Analysis of the stability of organic photovoltaic devices through external quantum efficiency (EQE)
DOI:
https://doi.org/10.5433/1679-0375.2022v43n1p95Keywords:
External quantum efficiency, Photovoltaic devices, Hybrid materials, Organic materialsAbstract
The use of solar panels for the purpose of converting solar energy into electrical energy has been increasingly common in the community, where the vast majority of these panels are produced from inorganic materials, especially silicon (Si). In recent decades, many researchers have been analyzing organic and hybrid materials in order to apply them to photovoltaic devices. The use of organic and hybrid materials in devices is advantageous due to some factors, such as: low production cost, variety of materials available, production of flexible devices. A fundamental analysis for any photovoltaic device is the external quantum efficiency measure (EQE). This technique correlates the number of incident photons with the number of electrons generated, making it possible to know in which region of the electromagnetic spectrum the photovoltaic device is more efficient. This work aims to apply the external quantum efficiency characterization technique for the evaluation of different types of photovoltaic devices in terms of their stabilityDownloads
References
BAI, F.; ZHANG, J.; ZENG, A.; ZHAO, H.; DUAN, K.; YU, H.; CHENG, K.; CHAI, G.; CHEN, Y.; LIANG, J.; MA, W.; YAN, H. A highly crystalline non-fullerene acceptor enabling efficient indoor organic photovoltaics with high EQE and fill factor. Joule, Cambridge, v. 5, n. 5, p. 1231-1245, 2021. DOI: https://doi.org/10.1016/j.joule.2021.03.020.
BARNES, P. R.; ANDERSON, A. Y.; KOOPS, S. E.; DURRANT, J. R.; O’REGAN, B. C. Electron injection efficiency and diffusion length in dye-sensitized solar cells derived from incident photon conversion efficiency measurements. The Journal of Physical Chemistry C, Washington, v. 113, n. 3, p. 1126-1136, 2009. DOI: https://doi.org/10.1021/jp809046j.
BRISTOW, N. Outdoor stability studies in Organic Photovoltaics. Thesis (Doctor of Philosophy) - Bangor University, United Kingdom, 2017.
BONDARENKO, E. A.; STRELTSOV, E. A.; MAZANIK, A. V.; KULAK, A. I.; GRIVICKAS, V.; SCAJEV, P.; SKORB, E. V. Bismuth oxysulfide film electrodes with giant incident photon-to-current conversion efficiency: the dynamics of properties with deposition time. Physical Chemistry Chemical Physics, Cambridge, v. 20, n. 31, p.~20340-20346, 2018.
BRINKMANN, K. O.; BECKER, T.; ZIMMERMANN, F.; KREUSEL, C.; GAHLMANN, T.; HAEGER, T.; RIEDL, T. The optical origin of near-unity external quantum efficiencies in perovskite solar cells. Solar RRL, Weinheim, v. 5, n. 9, p. 2100371, 2021.
CHAKRABORTY, I.; BODURTHA, K. J.; HEEDER, N. J.; GODFRIN, M. P.; TRIPATHI, A.; HURT, R. H.; SHUKLA, A.; BOSE, A. Massive electrical conductivity enhancement of multilayer graphene/polystyrene composites using a nonconductive filler. ACS applied materials & interfaces, Washington, v. 6, n. 19, p. 16472-16475, 2014.
CHANDER, N.; SINGH, S.; IYER, S. S. K. Stability and reliability of P3HT: PC61BM inverted organic solar cells. Solar Energy Materials and Solar Cells, Amsterdam, v.~161, p. 407-415, 2017.
CHANG, S.-W.; WATERS, H.; KETTLE, J.; KUO, Z.-R.; LI, C.-H.; YU, C.-C.; HORIE, M. Pd-Catalysed Direct Arylation Polymerisation for Synthesis of Low-Bandgap Conjugated Polymers and Photovoltaic Performance. Macromolecular rapid communications, Basel, v. 33, n. 22, p. 1927-1932, 2012. DOI: https://doi.org/10.1002/marc.201200368.
COATES, N. E.; HWANG, I.-W.; PEET, J.; BAZAN, G. C.; MOSES, D.; HEEGER, A. J. 1, 8-octanedithiol as a processing additive for bulk heterojunction materials: Enhanced photoconductive response. Applied Physics Letters, New York, v. 93, n. 7, p. 072105-1-072105-3, 2008. DOI: https://doi.org/10.1063/1.2969405.
GAO, J.; GAO, W.; MA, X.; HU, Z.;XU, C.; WANG, X.; AN, Q.; YANG, C.; ZHANG, X.; ZHANG, F. Over 14.5\% efficiency and 71.6% fill factor of ternary organic solar cells with 300 nm thick active layers. Energy & Environmental Science, Cambridge, v. 13, n. 3, p. 958-967, 2020.
HORIE, M.; MAJEWSKI, L. A.; FEARN, M. J.; YU, C.-Y.; LUO, Y.; SONG, A.; SAUNDERS, B. R.; TURNER, M. L. Cyclopentadithiophene based polymers—a comparison of optical, electrochemical and organic field-effect transistor characteristics. Journal of Materials Chemistry, Cambridge, v. 20, n. 21, p. 4347-4355, 2010.
HU, Z.; WANG, J.; MA, X.; GAO, J.; XU, C.; YANG, K.; WANG, Z.; ZHANG, J.; ZHANG, F. A critical review on semitransparent organic solar cells. Nano Energy, Amsterdam, v. 78, p. 105376, 2020.
JIANG, B.-H.; LEE, H.-E.; LU, J.-H.; TSAI, T.-H. SHIEH, T.-S; JENG, R. -J.; CHEN, C,-P. High-performance semitransparent organic photovoltaics featuring a surface phase-matched transmission-enhancing Ag/ITO electrode. ACS Applied Materials & Interfaces, Washington, v. 12, n.~35, p. 39496-39504, 2020. DOI: https://pubs.acs.org/doi/10.1021/acsami.0c10906.
KETTLE, J.; HORIE, M.; MAJEWSKI, L.; SAUNDERS, B.; TULADHAR, S.; NELSON, J.; TURNER, M. L. Optimisation of PCPDTBT solar cells using polymer synthesis with Suzuki coupling. Solar Energy Materials and Solar Cells, Amsterdam, v. 95, n. 8, p. 2186-2193, 2011.
KETTLE, J.; WATERS, H.; HORIE, M.; CHANG, S. Effect of hole transporting layers on the performance of PCPDTBT: PCBM organic solar cells. Journal of Physics D: Applied Physics, London, v. 45, n. 12, p. 125102, 2012.
KETTLE, J.; WATERS, H.; DING, Z.; HORIE, M.; SMITH, G. C. Chemical changes in PCPDTBT:PCBM solar cells using XPS and TOF-SIMS and use of inverted device structure for improving lifetime performance. Solar Energy Materials and Solar Cells, Amsterdam, v. 141, p. 139-147, 2015.
KLEEBE, H. J.; TURQUAT, C.; SORARÙ, G. D. Phase separation in an SiCO glass studied by transmission electron microscopy and electron energy-loss spectroscopy. Journal of the American Ceramic Society, Westerville, v. 84, n. 5, p. 1073-1080, 2001.
LI, C.; WU, H.; ZHU, L.; XIAO, J.; LUO, Y.; LI, D.; MENG, Q. Study on negative incident photon-to-electron conversion efficiency of quantum dot-sensitized solar cells. Review of Scientific Instruments, Woodbury, v. 85, n. 2, p. 023103, 2014.
QIAN, M.; MAO, X.; WU, M.; CAO, Z.; LUI, Q.; SUN, L.; GAO, Y.; XUAN, X.; PAN, Y.; NIU, Y.; GONG, S. POSS polyimide sealed flexible triple-junction gaas thinfilm solar cells for space applications. Advanced Materials Technologies, Hoboken, v. 6, n. 12, p. 2100603, 2021.
REESE, M. O. et al. Consensus stability testing protocols for organic photovoltaic materials and devices. Solar Energy Materials and Solar Cells, Amsterdam, v. 95, n. 5, p. 1253-1267, 2011.
TAI, Q.; YAN, F. Emerging semitransparent solar cells: materials and device design. Advanced Materials, Weinheim, v. 29, n. 34, p. 1700192, 2017.
TROMHOLT, T.; MANCEAU, M.; HELGESEN, M.; CARLE, J. E.; KREBS, F. C. Degradation of semiconducting polymers by concentrated sunlight. Solar Energy Materials and Solar Cells, Amsterdam, v. 95, n. 5, p.~1308-1314, 2011.
WATERS, H.; BRISTOW, N.; MOUDAM, O.; CHANG, S.-W.; SU, C. -J.; WU, W. -R.; JENG, U. -S.; HORIE, M.; KETTLE, J. Effect of processing additive 1, 8-octanedithiol on the lifetime of PCPDTBT based Organic Photovoltaics. Organic Electronics, Amsterdam, v. 15, n.~10, p. 2433-2438, 2014.
XIONG, J.; XU, J.; JIANG, Y.; XIAO, Z.; BAO, Q.; HAO, F.; FENG, Y.; ZHANG, B.; JIN, Z.; DING, L. Fused-ring bislactone building blocks for polymer donors. Science bulletin, Amsterdam, v. 65, p. 1792, 2020.
YAN, L.; YI, J.; CHEN, Q.; DOU, J.; YANG, Y.; LIU, X.; CHEN, L.; MA, C. -Q. External load-dependent degradation of P3HT: PC 61 BM solar cells: behavior, mechanism, and method of suppression. Journal of Materials Chemistry A, Cambridge, v. 5, n. 20, p. 10010-10020, 2017.
ZHANG, M.; YE, M.; WANG, W.; MA, C.; WANG, S.; LIU, Q.; LIAN, T.; HUAMG, J.; LIN, Z. Synergistic Cascade Carrier Extraction via Dual Interfacial Positioning of Ambipolar Black Phosphorene for High-Efficiency Perovskite Solar Cells. Advanced Materials, Weinheim, v. 32, n. 28, p. 2000999, 2020
Downloads
Published
How to Cite
Issue
Section
License
The Copyright Declaration for articles published in this journal is the author’s right. Since manuscripts are published in an open access Journal, they are free to use, with their own attributions, in educational and non-commercial applications. The Journal has the right to make, in the original document, changes regarding linguistic norms, orthography, and grammar, with the purpose of ensuring the standard norms of the language and the credibility of the Journal. It will, however, respect the writing style of the authors. When necessary, conceptual changes, corrections, or suggestions will be forwarded to the authors. In such cases, the manuscript shall be subjected to a new evaluation after revision. Responsibility for the opinions expressed in the manuscripts lies entirely with the authors.
This journal is licensed with a license Creative Commons Attribution-NonCommercial 4.0 International.