Curve fitting and autoregressive models in admissions data for respiratory diseases
DOI:
https://doi.org/10.5433/1679-0375.2025.v46.53584Keywords:
hospital expenses, respiratory diseases, curve fitting, time series, ARIMA modelAbstract
This study investigated hospitalization costs for respiratory diseases in the state of São Paulo between 2002 and 2025, analyzing the dynamics of these expenses within the Brazilian Unified Health System (SUS) and contextualizing the challenges of financing and managing public health in Brazil. The objective of this work was to identify historical patterns and understand expenditures by analyzing data from the DATASUS Hospital Information System. Using polynomial, logistic, and trigonometric curve fitting, as well as statistical time series models, with emphasis on the seasonal ARIMA model, seasonal trends and patterns in hospital expenditures were identified. This allowed for the capture of seasonal behaviors related to the amounts paid, specifically regarding the increase in hospitalizations for respiratory diseases during the transition between fall and winter. Finally, in the graphs associated with fluctuations around the average trend, two level transitions were observed in relation to the values paid: one associated with COVID-19 (mid-2020) and the other associated with H1N1 (in 2009). These levels correspond to the values of K=22.65 million, referring to the pre-COVID logistics model, and to K=35 million (logistics model that includes the COVID-19 pandemic period).
Downloads
References
Andrade, C. L. L. d., Victora, C. G., Mendonça, M. H. P. d., & Giovanella, L. (2011). Financiamento, gasto e oferta de serviços de saúde em grandes centros urbanos do estado de São Paulo (Brasil). Ciência & Saúde Coletiva, 16, 1875–1885. https://doi.org/10.1590/S1413-81232011000300022
Araújo, R., Watanabe, S., Boiron, L., Pereira, A. C., & Asano, E. (2021). Impacto econômico da infecção por influenza no Brasil: Uma análise sob a perspectiva dos sistemas de saúde e da sociedade em 2019. Jornal Brasileiro de Economia da Saúde, 13(3), 300–309. https://doi.org/10.21115/JBES.v13.n3.p300-9
Fiocruz. (2021). Combate à epidemia de H1N1: um histórico de sucesso. https://cee.fiocruz.br/?q=node/1314
Marques, L. J. P., Pereira, A. C., & Raimundo, A. C. S. (2025). Custos e características das internações por condições sensíveis à atenção primária em menores de um ano em São Paulo, Brasil. Ciência & Saúde Coletiva, 30(1), 1–14. https://doi.org/10.1590/1413-81232025301.15512023
Ministério da Saúde. (2025). DataSUS. https://datasus.saude.gov.br/
Morettin, P. A., & Toloi, C. M. C. (2018). Análise de séries temporais: modelos lineares univariados (3a ed., pp. 591–612). Blucher.
Reis, C. S. d., Noronha, K., & Wajnman, S. (2016). Envelhecimento populacional e gastos com internação do SUS: Uma análise realizada para o Brasil entre 2000 e 2010. Revista Brasileira de Estudos de População, 33(3), 591–612. https://doi.org/10.20947/S0102-30982016c0007
Ruggiero, M. A. G., & Lopes, V. L. d. R. (2000). Cálculo numérico: Aspectos teóricos e computacionais. Pearson.
Silva, L. M. d., Alvarez, G. B., Christo, E. d. S., Pelén Sierra, G. A., & Garcia, V. d. S. (2021). Time series forecasting using ARIMA for modeling of glioma growth in response to radiotherapy. Semina: Ciências Exatas e Tecnológicas, 42(1), 3–12. https://doi.org/10.5433/1679-0375.2021v42n1p3
Wheeler, J., & Ionides, E. L. (2024). Likelihood based inference for ARMA models. ArXiv, 5, 1–25. https://arxiv.org/pdf/2310.01198v5
Wheeler, J., McAllister, N., Sylvertooth, D., Ionides, E., & Ripley, B. (2025). Arima2: Likelihood based inference for ARIMA modeling. https://doi.org/10.32614/CRAN.package.arima2
World Health Organization. (2025). World report on social determinants of health equity. https://www.who.int/publications/i/item/9789240107588
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Raphael de Oliveira Garcia, Graciele Paraguaia Silveira, Bruna Santos Silva

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Copyright Declaration for articles published in this journal is the author's right. Since manuscripts are published in an open access Journal, they are free to use, with their own attributions, in educational and non-commercial applications. The Journal has the right to make, in the original document, changes regarding linguistic norms, orthography, and grammar, with the purpose of ensuring the standard norms of the language and the credibility of the Journal. It will, however, respect the writing style of the authors. When necessary, conceptual changes, corrections, or suggestions will be forwarded to the authors. In such cases, the manuscript shall be subjected to a new evaluation after revision. Responsibility for the opinions expressed in the manuscripts lies entirely with the authors.
This journal is licensed with a license Creative Commons Attribution-NonCommercial 4.0 International.