Curve fitting and autoregressive models in admissions data for respiratory diseases

Curve fitting and autoregressive models in admissions data for respiratory diseases

Authors

DOI:

https://doi.org/10.5433/1679-0375.2025.v46.53584

Keywords:

hospital expenses, respiratory diseases, curve fitting, time series, ARIMA model

Abstract

This study investigated hospitalization costs for respiratory diseases in the state of São Paulo between 2002 and 2025, analyzing the dynamics of these expenses within the Brazilian Unified Health System (SUS) and contextualizing the challenges of financing and managing public health in Brazil. The objective of this work was to identify historical patterns and understand expenditures by analyzing data from the DATASUS Hospital Information System. Using polynomial, logistic, and trigonometric curve fitting, as well as statistical time series models, with emphasis on the seasonal ARIMA model, seasonal trends and patterns in hospital expenditures were identified. This allowed for the capture of seasonal behaviors related to the amounts paid, specifically regarding the increase in hospitalizations for respiratory diseases during the transition between fall and winter. Finally, in the graphs associated with fluctuations around the average trend, two level transitions were observed in relation to the values paid: one associated with COVID-19 (mid-2020) and the other associated with H1N1 (in 2009). These levels correspond to the values of K=22.65 million, referring to the pre-COVID logistics model, and to K=35 million (logistics model that includes the COVID-19 pandemic period).

Downloads

Download data is not yet available.

Author Biographies

Raphael de Oliveira Garcia, Universidade Federal de São Paulo

Prof. Dr., Department of Actuarial Sciences, Universidade Federal de São Paulo (UNIFESP), Osasco, SP, Brazil.

Graciele Paraguaia Silveira, Universidade Federal de São Carlos

Prof. Dr., Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), Sorocaba, SP, Brazil.

Bruna Santos Silva, undefined

Graduated in Actuarial Science, Federal University of São Paulo, UNIFESP, Osasco Campus, Osasco, SP, Brazil.

References

Andrade, C. L. L. d., Victora, C. G., Mendonça, M. H. P. d., & Giovanella, L. (2011). Financiamento, gasto e oferta de serviços de saúde em grandes centros urbanos do estado de São Paulo (Brasil). Ciência & Saúde Coletiva, 16, 1875–1885. https://doi.org/10.1590/S1413-81232011000300022

Araújo, R., Watanabe, S., Boiron, L., Pereira, A. C., & Asano, E. (2021). Impacto econômico da infecção por influenza no Brasil: Uma análise sob a perspectiva dos sistemas de saúde e da sociedade em 2019. Jornal Brasileiro de Economia da Saúde, 13(3), 300–309. https://doi.org/10.21115/JBES.v13.n3.p300-9

Fiocruz. (2021). Combate à epidemia de H1N1: um histórico de sucesso. https://cee.fiocruz.br/?q=node/1314

Marques, L. J. P., Pereira, A. C., & Raimundo, A. C. S. (2025). Custos e características das internações por condições sensíveis à atenção primária em menores de um ano em São Paulo, Brasil. Ciência & Saúde Coletiva, 30(1), 1–14. https://doi.org/10.1590/1413-81232025301.15512023

Ministério da Saúde. (2025). DataSUS. https://datasus.saude.gov.br/

Morettin, P. A., & Toloi, C. M. C. (2018). Análise de séries temporais: modelos lineares univariados (3a ed., pp. 591–612). Blucher.

Reis, C. S. d., Noronha, K., & Wajnman, S. (2016). Envelhecimento populacional e gastos com internação do SUS: Uma análise realizada para o Brasil entre 2000 e 2010. Revista Brasileira de Estudos de População, 33(3), 591–612. https://doi.org/10.20947/S0102-30982016c0007

Ruggiero, M. A. G., & Lopes, V. L. d. R. (2000). Cálculo numérico: Aspectos teóricos e computacionais. Pearson.

Silva, L. M. d., Alvarez, G. B., Christo, E. d. S., Pelén Sierra, G. A., & Garcia, V. d. S. (2021). Time series forecasting using ARIMA for modeling of glioma growth in response to radiotherapy. Semina: Ciências Exatas e Tecnológicas, 42(1), 3–12. https://doi.org/10.5433/1679-0375.2021v42n1p3

Wheeler, J., & Ionides, E. L. (2024). Likelihood based inference for ARMA models. ArXiv, 5, 1–25. https://arxiv.org/pdf/2310.01198v5

Wheeler, J., McAllister, N., Sylvertooth, D., Ionides, E., & Ripley, B. (2025). Arima2: Likelihood based inference for ARIMA modeling. https://doi.org/10.32614/CRAN.package.arima2

World Health Organization. (2025). World report on social determinants of health equity. https://www.who.int/publications/i/item/9789240107588

Downloads

Published

2025-12-18

How to Cite

de Oliveira Garcia, R., Silveira, G. P., & Silva, B. S. (2025). Curve fitting and autoregressive models in admissions data for respiratory diseases. Semina: Ciências Exatas E Tecnológicas, 46, e53584. https://doi.org/10.5433/1679-0375.2025.v46.53584

Issue

Section

Biomathematics (Special section)
Loading...