Analysis of Local Stability for Discrete Lotka-Volterra Models

Analysis of Local Stability for Discrete Lotka-Volterra Models

Authors

DOI:

https://doi.org/10.5433/1679-0375.2025.v46.53574

Keywords:

Lotka-Volterra, mathematical modeling, population dynamics, stability of discrete systems

Abstract

This paper applies the stability theory of discrete systems to a predator–prey model with a specific structure, formulated directly in discrete time. This approach offers didactic and computational advantages for modeling ecological systems with non-overlapping generations, contrasting with methods that discretize continuous models. This direct formulation captures the inherently discrete nature of ecological monitoring and non-overlapping generations, while presenting particular analytical challenges. Through linearization and spectral analysis, we obtain explicit stability conditions for the system's three equilibria: total extinction, which is always unstable; predator exclusion; and coexistence, whose local behaviors depend on conditions among biotic parameters. The results provide practical criteria for predicting population persistence, offering a foundation for applied studies in control and conservation.

Downloads

Download data is not yet available.

Author Biographies

Francis Félix Cordova Puma, Universidade Federal de Santa Catarina

Prof. Dr., Department of Mathematics, Federal University of Santa Catarina (UFSC), Blumenau, SC, Brazil.

Mireya Mendiguren Mager, Universidade Federal de Santa Catarina

Mathematics undergraduate student (UFSC), researching mathematical modeling and the history of models. Tutor in the OBMEP Initiation Program (PIC). 

References

Almaraz, P., Kalita, P., Langa, J. A., & Soler–Toscano, F. (2024). Structural stability of invasion graphs for Lotka–Volterra systems. Journal of Mathematical Biology, 88(64), 1–25. https://doi.org/10.1007/s00285-024-02087-8

Braverman, E., & Kinzebulatov, D. (2006). On linear perturbations of the Ricker model. Mathematical Biosciences, 202(2), 323–339. https://doi.org/10.1016/j.mbs.2006.04.008

Din, Q. (2013). Dynamics of a discrete Lotka–Volterra model. Advances in Difference Equations, 2013(1), 95. https://doi.org/10.1186/1687-1847-2013-95

Diniz, G. L. (2011). Equações de diferenças e sistemas: com aplicações biológicas (Vol. 54). SBMAC.

Fisher, M. E., Goh, B. S., & Vincent, T. L. (1979). Some stability conditions for discrete-time single species models. Bulletin of Mathematical Biology, 41, 861–875. https://doi.org/10.1007/BF02462383

Kekulthotuwage Don, S., Burrage, K., Helmstedt, K. J., & Burrage, P. M. (2023). Stability switching in Lotka–Volterra and Ricker-type predator–prey systems with arbitrary step size. Axioms, 12(4), 390. https://doi.org/10.3390/axioms12040390

Khaliq, A., Ibrahim, T. F., Alotaibi, A. M., Shoaib, M., & El-Moneam, M. A. (2022). Dynamical analysis of discrete-time two-predators one-prey Lotka–Volterra model. Mathematics, 10(21), 4015. https://doi.org/10.3390/math10214015

Krabs, W., & Pickl, S. (2010). Dynamical systems: Stability, controllability and chaotic behavior. Springer.

Luiz, K. S., Organista, J., Cirilo, E. R., Romeiro, N. M. L., & Natti, P. L. (2022). Convergência numérica de um sistema Telegraph Predator–Prey. Semina: Ciências Exatas e Tecnológicas, 43(1Esp), 51–66. https://doi.org/10.5433/1679-0375.2022v43n1Espp51

Lv, L., & Li, X. (2024). Stability and bifurcation analysis in a discrete predator–prey system of Leslie type with radio-dependent simplified Holling type IV functional response. Mathematics, 12(12), 1803. https://doi.org/10.3390/math12121803

Malthus, T. R. (1826). An essay on the principle of population (6th ed.). John Murray. https://commons.wikimedia.org/w/index.php?title=File:Malthus_(IA_darwin-online_1826_Malthus_A545.2).pdf&page=4

May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature, 261, 459–464. https://doi.org/10.1038/261459a0

Saber, E. (2005). An introduction to difference equations. Springer.

Saber, E. (2007). Discrete chaos: With applications in science and engineering (2nd ed.). CRC Press. https://www.taylorfrancis.com/books/9781420011043

Seno, H. (2008). A paradox in discrete single species population dynamics with harvesting/thinning. Mathematical Biosciences, 214(1), 63–69. https://doi.org/10.1016/j.mbs.2008.06.004

Verhulst, P. F. (1838). Notice sur la loi que la population poursuit dans son accroissement. In A. Quetelet, Correspondance Mathématique et Physique (Vol. 10, pp. 113–121). https://books.google.com.br/books?hl=fr&id=8GsEAAAAYAAJ&jtp=113&redir_esc=y#v=onepage&q&f=false

Downloads

Published

2025-12-16

How to Cite

Puma, F. F. C., & Mager, M. M. (2025). Analysis of Local Stability for Discrete Lotka-Volterra Models. Semina: Ciências Exatas E Tecnológicas, 46, e53574. https://doi.org/10.5433/1679-0375.2025.v46.53574

Issue

Section

Biomathematics (Special section)
Loading...