Quantile nonlinear regression for modeling maize growth data
DOI:
https://doi.org/10.5433/1679-0375.2025.v46.53256Keywords:
nonlinear models, quantile regression, intrinsec nonlinearity measure, corn culture, growth curve analisysAbstract
Statistical modeling is fundamental in plant growth studies as it guides management practices across different developmental stages. Among existing approaches, nonlinear regression models stand out for describing growth patterns over time through estimated parameters, typically obtained via least squares methods. However, this approach is limited to average data analysis and remains sensitive to outliers and variance heterogeneity. Quantile regression emerges as a robust alternative, enabling estimation across different quantiles without requiring normality assumptions for errors. This study aimed to analyze corn plant growth over time using quantile nonlinear regression and to investigate critical points in the applied models. We evaluated logistic, Gompertz, and Chanter models, assessing their goodness-of-fit through the Akaike Information Criterion (AIC), intrinsic nonlinearity measures, and two novel statistics proposed here: quantile correlation and the weighted sum of squared deviations (WSSD). Results demonstrated that the Chanter model provided the best fit for the analyzed dataset, with strong performance across different quantiles.
Downloads
References
Akaike, H. (2003). A new look at the statistical model identification. IEEE transactions on automatic control,19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705
Amador, J. P. (2010). Modelos mistos no ajuste de curvas de crescimento de Ricinus communis L. [Tese de doutorado, Universidade Federal de Santa Maria]. Repositório institucional. https://repositorio.ufsm.br/handle/1/3192
Cargnelutti, A. Filho & Toebe, M. (2020). Reference sample size for multiple regression in corn. Pesquisa Agropecuária Brasileira, 55, e01400. https://doi.org/10.1590/S1678-3921.pab2020.v55.01400
Crosariol Netto, J. (2013). Infestação de dados e Dichelops melacanthus (Dallas, 1851) (Heteroptera: Pentatomidae) em híbridos transgênicos e convencionais de milho, submetidos ao controle químico [Dissertação de mestrado, Universidade Estadual Paulista "Júlio de Mesquita Filho"]. Repositório institucional. http://hdl.handle.net/11449/91328
Fernandes, T. J., & Pereira, A. A. M. J. A. (2017). Double sigmoidal models describing the growth of coffee berries. Ciência Rural, 47(8), 1–8. https://doi.org/10.1590/0103-8478cr20160646
Gray, V. M. (2000). A comparison of two approaches for modelling cassava (Manihot esculenta Crantz.) crop growth. Annals of Botany, 85(1), 77–90. https://doi.org/10.1006/anbo.1999.0999
Hao, L., & Naiman, D. Q. (2007). Quantile Regression. Sage Publications.
Koenker, R. (2005). Quantile Regression (Vol. 1). Cambridge University Press.
Koenker, R., & Basset, G. J. (1978). Regression quantiles. Econometrica: Journal of the Econometric Society, 46(1), 33–50. https://doi.org/10.2307/1913643
Mazucheli, J., & Achcar, J. A. (2002). Algumas considerações em regressão não linear. Acta Scientiarum, 24(6), 1761–1770. https://doi.org/10.4025/actascitechnol.v24i0.2551
Migault, V., Combes, D., Barre, P., Gueye, B., Louarn, G., & Escobar-Gutiérrez, A. J. (2012). Improved modelling of ryegrass foliar growth. Proceedings of the Plant Growth Modeling, Simulation, Visualization and Applications [Proceesding]. 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications, Shanghai, China. https://doi.org/10.1109/PMA.2012.6524847
Mischan, M. M., & Pinho, S. Z. (2014). Modelos não lineares. Cultura Acadêmica.
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Ratkowsky, D. A. (1983). Nonlinear Regression Modeling. Dekker.
Silva, E. M., Fruhauf, A. C., Silva, E. M., Muniz, J. A., Fernandes, T. J., & Silva, V. F. (2021). Evaluation of the critical points of the most adequate nonlinear model in adjusting growth data of ‘green dwarf’ coconut fruits. Revista Brasileira de Fruticultura, 43(1), e–726. https://doi.org/10.1590/0100-29452021726
Silva, P. V. (2018). Modelo não linear Chanter: uma aplicação aos dados de crescimento de frutos do cacaueiro [Dissertação de mestrado, Universidade de São Paulo]. Repositório institucional. https://doi.org/10.11606/D.11.2018.tde-02072018-103309
Silva, P. V. (2022). Uso da regressão não linear quantílica na descrição de dados de crescimento [Tese de doutorado, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo]. Repositório institucional. https://doi.org/10.11606/T.11.2022.tde-10052022-155257
Silva, P. V., & Savian, T. V. (2019). Chanter model: nonlinear modeling of the fruit growth of cocoa. Ciência Rural, 49(11), e20190409. https://doi.org/10.1590/0103-8478cr20190409
Sorrel, B. K., Tanner, C. C., & Brix, H. (2012). Regression analysis of growth responses to water depth in three wetland plant species. AoB Plants, pls043. https://doi.org/10.1093/aobpla/pls043
Souza, R. J., & Macêdo, F. S. (2009). Cultura do alho: Tecnologias modernas de produção. Editora UFLA. United States Department of Agriculture. (2025). World Agricultural Production (Circular Series WAP 09-25). https://apps.fas.usda.gov/psdonline/circulars/production.pdf
Younesi, H. N., Shariati, M. M., Zerehdaran, S., Nooghabi, M., & Lovendahl, P. (2019). Using quantile regression for fitting lactation curve in dairy cows. Journal of Dairy Research, 86(1), 19–24. https://doi.org/10.1017/S0022029919000013
Zeviani, W. M., Silva, A. C., Carneiro, W. J. O., & Muniz, J. A. (2012). Modelos não-lineares para a liberação de potássio de estercos animais em latossolos. Ciência Rural, 42(10), 1789–1796. https://doi.org/10.1590/S0103-84782012001000012
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Pollyane Vieira da Silva, Taciana Villela Savian

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Copyright Declaration for articles published in this journal is the author's right. Since manuscripts are published in an open access Journal, they are free to use, with their own attributions, in educational and non-commercial applications. The Journal has the right to make, in the original document, changes regarding linguistic norms, orthography, and grammar, with the purpose of ensuring the standard norms of the language and the credibility of the Journal. It will, however, respect the writing style of the authors. When necessary, conceptual changes, corrections, or suggestions will be forwarded to the authors. In such cases, the manuscript shall be subjected to a new evaluation after revision. Responsibility for the opinions expressed in the manuscripts lies entirely with the authors.
This journal is licensed with a license Creative Commons Attribution-NonCommercial 4.0 International.