Nonlinear Canonical correspondence Analysis: Description of the data of Coffee

Nonlinear Canonical correspondence Analysis: Description of the data of Coffee

Authors

DOI:

https://doi.org/10.5433/1679-0375.2023.v44.47875

Keywords:

specialty coffees, commercial coffee, multivariate polynomial regression, appraisers, blends

Abstract

The formulation of coffee blends is of paramount importance for the coffee industry, as it provides the product with an expressive ability to compete in the market and adds sensory attributes that complement the consumption experience. Through redundancy analysis and canonical correspondence analysis, it is possible to study the relationships between a set of sensory notes and a set of blends with different proportions of coffee variety through multivariate linear regression models. However, it is unrealistic to assume that such sensory responses are given linearly in relation to the formulation of the blends, since some coffee species have greater weight in the sensory evaluation (quadratic terms) and the effect of the mixtures (term of interaction). With this motivation, this work aims to propose the use of redundancy analysis and nonlinear correspondence analysis through multivariate polynomial regression to evaluate the acceptance of different varieties of coffee blends according to the scores given by the evaluators. Finally, it is concluded that there were gains in the percentage of total explained variance in the polynomial models in relation to the classic models.

Downloads

Download data is not yet available.

Author Biographies

Herbert Stein Pereira Torres Santos, Federal University of Lavras - MG

Master's student, PPGEEA, UFLA, Lavras, MG, Brazil

Marcelo Angelo Cirillo, Federal University of Lavras - MG

Prof. Dr., DES, UFLA, Lavras, MG, Brazil

Flávio Meira Borém, Federal University of Lavras - MG

Prof. Dr., DEA, UFLA, Lavras, MG, Brazil

Diana Del Rocío Rebaza Fernández, Universidad Nacional Agraria La Molina

Prof. Mg.Sc., DAEI, UNALM, Lima, Peru

References

Cirillo, M. A., Ramos, M. F., Borém, F. M., Miranda, F. M., Ribeiro, D. E., & Menezes, F. S. (2019). Statistical procedure for the composition of a sensory panel of blends of coffee with different qualities using the distribution of the extremes of the highest scores. Acta Scientiarum. Agronomy, 41(1), e39323. https://doi.org/10.4025/actasciagron.v41i1. 39323 DOI: https://doi.org/10.4025/actasciagron.v41i1.39323

Costa, A. L. A., Brighenti, C. R. G., & Cirillo, M. A. (2018). A new approach to simple correspondence analysis with emphasis on the violation of the independence assumption of the levels of categorical variables. Acta Scientiarum. Technology, 40, e34953. https://doi.org/10.4025/actascitechnol.v40i1.34953 DOI: https://doi.org/10.4025/actascitechnol.v40i1.34953

Costa, A. S., Resende, M., Nakayo, E. Y., Cirillo, M. A., Borém, F. M., & Ribeiro, D. E. (2020). Proposal of a metric selection index for correspondence analysis: An application in the sensory evaluation of coffee blends. Semina: Ciências Agrárias, 41(2), 479–492. https://doi.org/10.5433/1679-0359.2020v41n2p479 DOI: https://doi.org/10.5433/1679-0359.2020v41n2p479

Guimarães, E. R. (2016). Terceira onda do café: Base conceitual e aplicações. [Master’s thesis, Universidade Federal de Lavras].

Ivoglo, M. G., Fazuoli, L. C. F., Oliveira, A. C. B., Gallo, P. B., Mistro, J. C., Silvrolla, M. B., & Toma-Braghini, M. (2008). Genetic divergence among robusta coffe progenies. Bragantia, 67(4), 823–831. https://doi.org/10. 1590/S0006-8705200800040000 DOI: https://doi.org/10.1590/S0006-87052008000400003

Lazraq, A., & Cléroux, R. (2002). Testing the significance of the successive components in redundancy analysis. Psychometrika, 67(3), 411– 419. https://doi.org/10.1007/BF02294993 DOI: https://doi.org/10.1007/BF02294993

Legendre, P., & Legendre, L. (2012). Numerical ecology (2nd ed., Vol. 1). DOI: https://doi.org/10.1016/B978-0-444-53868-0.50001-0

Elsevier. Lima, T., Lucia, S. M. D., Saraiva, S. H., & Lima, R. M. (2015). Physico-chemical characterization of espresso coffee beverage prepared from blends of arabica and conilon coffees. Rev. Ceres, 62(4), 333–339. https://doi.org/10.1590/0034-737X201562040001 DOI: https://doi.org/10.1590/0034-737X201562040001

Makarenkov, V., & Legendre, P. (2002). Nonlinear redundancy analysis and canonical correspondence analysis based on polynomial regression. Ecology, 83(4), 1146–1161. https://doi.org/10.2307/3071920 DOI: https://doi.org/10.1890/0012-9658(2002)083[1146:NRAACC]2.0.CO;2

Messias, R. M. (2016). Transformações em dados composicionais para a aplicação da análise de componentes principais. [Thesis Ph.D.] Universidade de São Paulo.

Oksanen, A. J., Blanchet, F. G., & Kindt, R. (2020). Vegan: Community ecology package version 2.5-7. R Foundation for Statistical Computing. http://cran.r-project.%20org/package=%20vegan,%202020

Ossani, P. C., Cirillo, M. A., Borém, F. M., Ribeiro, D. E., & Cortez, R. M. (2017). Qualidade de cafés especiais: Uma avaliação sensorial feita com consumidores utilizando a técnica MFACT. Ciência Agronômica, 48(1), 92–100. https://doi.org/10.5935/1806-6690.20170010 DOI: https://doi.org/10.5935/1806-6690.20170010

Paulino, A. L. B., Cirillo, M. A., Ribeiro, D. E., Borém, F. M., & Matias, G. C. (2019). A mixed model applied to joint analysis in experiments with coffee blends using the least squares method. Ciência Agronômica, 50(3), 345–352. https://doi.org/10.5935/1806-6690.20190041 DOI: https://doi.org/10.5935/1806-6690.20190041

Rencher, A. C. (2002). Methods of multivariate analysis (Vol. 1). DOI: https://doi.org/10.1002/0471271357

John Wiley & Sons, Inc. Ribeiro, B. B., Mendonça, L. M. V. L., Assis, G. A., Mendonça, J. M. A., Malta, M. R., & Montanari, F. F. (2014). Avaliação química e sensorial de blends de Coffea canephora pierre e Coffea arabica L. Coffee Science, 9(2), 178– 186. http://www.sbicafe.ufv.br:80/handle/123456789/8027

Ribeiro, D. E., Borém, F. M., Cirillo, M. A., Prado, M. V. B., Ferraz, V. P., Alves, H. M. R., & Taveira, J. H. S. (2016). Interaction of genotype, environment and processing in the chemical composition expression and sensorial quality of arabica coffee. Afr. J. Agric. Res., 11(27), 2412–2422. https://doi.org/10. 5897/AJAR2016.10832 DOI: https://doi.org/10.5897/AJAR2016.10832

Stewart, D., & Love, W. (1968). A general canonical correlation index. Psychol Bull, 70(3), 160– 163. https://doi.org/10.1037/h0026143 DOI: https://doi.org/10.1037/h0026143

Ter Braak, C. J. F. (1986). Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology, 67(5), 1167–1179. https://doi.org/10.2307/1938672 DOI: https://doi.org/10.2307/1938672

Van den Wollenberg, A. L. (1977). Redundancy analysis an alternative for canonical correlation analysis. Psychometrika, 42(2), 207– 219. https://doi.org/10.1007/BF02294050 DOI: https://doi.org/10.1007/BF02294050

Wickham, H., François, R., Henry, L., Muller, K., & Vaughant, D. (2020). Dplyr: A grammar of data manipulation. R Foundation for Statistical Computing-R package version 0.8. 5. 700. https://CRAN%20Rproject.org/package=%20dplyr,%20v%20701,%202020

Downloads

Published

2023-06-23

How to Cite

Herbert Stein Pereira Torres Santos, Marcelo Angelo Cirillo, Borém, F. M., & Rebaza Fernández, D. D. R. (2023). Nonlinear Canonical correspondence Analysis: Description of the data of Coffee. Semina: Ciências Exatas E Tecnológicas, 44, e47875. https://doi.org/10.5433/1679-0375.2023.v44.47875

Issue

Section

Statistic

Most read articles by the same author(s)

Loading...