Recovering the Cathode Material Adhered to the Collector and Separator of Spent Lithium-Ion Batteries for Recycling Purposes

Recovering the Cathode Material Adhered to the Collector and Separator of Spent Lithium-Ion Batteries for Recycling Purposes

Authors

DOI:

https://doi.org/10.5433/1679-0375.2023.v44.47835

Keywords:

lithium-ion battery, cathode material, separation methods, discharge in solution

Abstract

Depleted Li-ion batteries (LIBs) must be recycled for environmental and sustainability reasons. Most recycling processes are dedicated to the recovery of Li, Co, Mn, and Ni present in the cathode material of LIBs. However, separating the cathode material strongly adhered to the aluminum collector and those mechanically trapped into the polymeric separator is still challenging. Processes to separate the cathode material by dissolving its aluminum collector in NaOH solution and to extract part of this material encrusted in the separator by ultrasonic cavitation and mechanical friction are presented in tests with NMC batteries on a laboratory scale. Tests of LIB discharges were also carried out in different MnO4 solution concentrations, and the related electrochemical reactions were discussed.

Downloads

Download data is not yet available.

Author Biographies

Marcelo Henrique Novaes, State University of Londrina - UEL

Undergraduate Student, Department of Physics, UEL, Londrina, PR, Brazil

Paulo Rogério Catarini da Silva, State University of Londrina - UEL

Technician Dr., Department of Physics, UEL, Londrina, PR, Brazil

Paulo Sergio Parreira, State University of Londrina - UEL

Prof. Dr., Department of Physics, UEL, Londrina, PR, Brazil

Gabriel Gonzaga Santos, State University of Londrina - UEL

Master Student, Department of Physics, UEL, Londrina, PR, Brazil

Lucas Evangelista Sita, State University of Londrina - UEL

PhD student, Department of Physics, UEL, Londrina, PR, Brazil

Jair Scarminio, State University of Londrina - UEL

Prof. Dr., Physics Dept. UEL, Londrina, Paraná, Brazil

References

Asenbauer, J., Eisenmann, T., Kuenzel, M., Kazzazi, A., Chen, Z., & Bresser, D. (2020). The success story of graphite as a lithium-ion anode material: fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustainable Energy and Fuels, 4(11), 5387–5416. DOI: https://doi.org/10.1039/D0SE00175A

Bae, H., & Kim, Y. (2021). Technologies of lithium recycling from waste lithium-ion batteries: A review. Materials Advances, 2(10), 3234–3250. DOI: https://doi.org/10.1039/D1MA00216C

Bai, Y., Essehli, R., Jafta, C. J., Livingston, K. M., & Belharouak, I. (2021). Recovery of Cathode Materials and Aluminum Foil Using a Green Solvent. ACS Sustainable Chemistry and Engineering, 9(17), 6048–6055. DOI: https://doi.org/10.1021/acssuschemeng.1c01293

Chen, T., Jin, Y., Lv, H., Yang, A., Liu, M., Chen, B., Xie, Y., & Chen, Q. (2020). Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems. Transactions of Tianjin University, 26(3), 208–217. DOI: https://doi.org/10.1007/s12209-020-00236-w

Chen, Y., Kang, Y., Zhao, Y., Wang, L., Liu, J., Li, Y., Liang, Z., He, X., Li, X., Tavajohi, N., & Li, B. (2021). A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. Journal of Energy Chemistry, 59, 83–99. DOI: https://doi.org/10.1016/j.jechem.2020.10.017

Ferreira, D. A., Prados, L. M. Z., Majuste, D., & Mansur, M. B. (2009). Hydrometallurgical separation of aluminum, cobalt, copper, and lithium from spent Li-ion batteries. Journal of Power Sources, 187(1), 238–246. DOI: https://doi.org/10.1016/j.jpowsour.2008.10.077

Gaye, N., Gueye, R. S., Ledauphin, J., Balde, M., Seck, M., Wele, A., & Diaw, M. (2019). Alkaline Leaching of Metals from Cathodic Materials of Spent Lithium-Ion Batteries. Asian Journal of Applied Chemistry Research, 1–7. DOI: https://doi.org/10.9734/ajacr/2019/v3i230088

He, Y., Yuan, X., Zhang, G., Wang, H., Zhang, T., Xie, W., & Li, L. (2021). A critical review of current technologies for the liberation of electrode materials from foils in the recycling process of spent lithium-ion batteries. Science of the Total Environment, 766, 142382. DOI: https://doi.org/10.1016/j.scitotenv.2020.142382

Hu, H., Xue, W., Jiang, P., & Li, Y. (2022). Polyimide-Based Materials for Lithium-Ion Battery Separator Applications: A Bibliometric Study. International Journal of Polymer Science, 2022(3). DOI: https://doi.org/10.1155/2022/6740710

Hu, Z., Zhu, N., Wei, X., Zhang, S., Li, F., Wu, P., & Chen, Y. (2021). Efficient separation of aluminum foil from mixed-type spent lithium-ion power batteries. Journal of Environmental Management, 298, 113500. DOI: https://doi.org/10.1016/j.jenvman.2021.113500

Mahmud, S., Rahman, M., Kamruzzaman, M., Ali, M. O., Emon, M. S. A., Khatun, H., & Ali, M. R. (2022). Recent advances in lithium-ion battery materials for improved electrochemical performance: A review. Results in Engineering, 15, 100472. DOI: https://doi.org/10.1016/j.rineng.2022.100472

Ojanen, S., Lundström, M., Santasalo-Aarnio, A., & Serna-Guerrero, R. (2018). Challenging the concept of electrochemical discharge using salt solutions for lithium-ion battery recycling. Waste Management, 76, 242–249. DOI: https://doi.org/10.1016/j.wasman.2018.03.045

Shaw-Stewart, J., Alvarez-Reguera, A., Greszta, A., Marco, J., Masood, M., Sommerville, R., & Kendrick, E. (2019). Aqueous solution discharge of cylindrical lithium-ion cells. Sustainable Materials and Technologies, 22, e00110. DOI: https://doi.org/10.1016/j.susmat.2019.e00110

Sita, L. E., dos Santos, C. S., da Silva, S. P., de Faria Lima, A., & Scarminio, J. (2022). A simple process to resynthesize the LiCoO2 and LiNi1/3Co1/3Mn1/3O2 compounds from the cathode material extracted from a batch of spent LCO batteries. Journal of Alloys and Compounds, 894, 162350. DOI: https://doi.org/10.1016/j.jallcom.2021.162350

Sita, L. E., da Silva, S. P., da Silva, P. R. C., Urbano, A., & Scarminio, J. (2015). Optimization of LiCoO2 powder extraction process from cathodes of lithium-ion batteries by chemical dissolution. Semina: Ciências Exatas e Tecnológicas, 36(1), 11–18. DOI: https://doi.org/10.5433/1679-0375.2015v36n1p11

Torabian, M. M., Jafari, M., & Bazargan, A. (2022). Discharge of lithium-ion batteries in salt solutions for safer storage, transport, and resource recovery. Waste Management and Research, 40(4), 402–409. DOI: https://doi.org/10.1177/0734242X211022658

Weng, Y., Xu, S., Huang, G., & Jiang, C. (2013). Synthesis and performance of Li[(Ni1/3Co1/3Mn1/3)1-xMgx]O2 prepared from spent lithium-ion batteries. Journal of Hazardous Materials, 246–247, 163–172. DOI: https://doi.org/10.1016/j.jhazmat.2012.12.028

Xiao, J., Guo, J., Zhan, L., & Xu, Z. (2020). A Cleaner Approach to the Discharge Process of Spent Lithium-Ion Batteries in Different Solutions. Journal of Cleaner Production, 255, 120064. DOI: https://doi.org/10.1016/j.jclepro.2020.120064

Yao, L. P., Zeng, Q., Qi, T., & Li, J. (2020). An Environmentally Friendly Discharge Technology to Pretreat Spent Lithium-Ion Batteries. Journal of Cleaner Production, 245, 118820. DOI: https://doi.org/10.1016/j.jclepro.2019.118820

Zhan, R., Oldenburg, Z., & Pan, L. (2018). Recovery of Active Cathode Materials from Lithium-Ion Batteries Using Froth Flotation. Sustainable Materials and Technologies, 17, e00062. DOI: https://doi.org/10.1016/j.susmat.2018.e00062

Zhang, J., Li, J., Wang, Y., Sun, M., Wang, L., & Tu, Y. (2023). Separation of Graphites and Cathode Materials from Spent Lithium-Ion Batteries Using Roasting–Froth Flotation. Sustainability (Switzerland), 15(1). DOI: https://doi.org/10.3390/su15010030

Zhong, X., Han, J., Chen, L., Liu, W., Jiao, F., Zhu, H., & Qin, W. (2021). Binding Mechanisms of PVDF in Lithium-Ion Batteries. Applied Surface Science, 553, 149564. DOI: https://doi.org/10.1016/j.apsusc.2021.149564

Downloads

Published

2023-11-06

How to Cite

Novaes, M. H., da Silva, P. R. C., Parreira, P. S., Santos, G. G., Sita, L. E., & Scarminio, J. (2023). Recovering the Cathode Material Adhered to the Collector and Separator of Spent Lithium-Ion Batteries for Recycling Purposes. Semina: Ciências Exatas E Tecnológicas, 44, e47835. https://doi.org/10.5433/1679-0375.2023.v44.47835

Issue

Section

Physics

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.

Loading...