Why much of Chemistry may be indisputably non-bonded?





intermolecular interactions, periodic table, theoretical methods, non-bonded


In this compendium, the wide scope of all intermolecular interactions ever known has been revisited, in particular giving emphasis the capability of much of the elements of the periodic table to form non-covalent contacts. Either hydrogen bonds, dihydrogen bonds, halogen bonds, pnictogen bonds, chalcogen bonds, triel bonds, tetrel bonds, regium bonds, spodium bonds or even the aerogen bond interactions may be cited. Obviously that experimental techniques have been used in some works, but it was through the theoretical methods that these interactions were validate, wherein the QTAIM integrations and SAPT energy partitions have been useful in this regard. Therefore, the great goal concerns to elucidate the interaction strength and if the intermolecular system shall be total, partial or non-covalently bonded, wherein this last one encompasses the most majority of the intermolecular interactions what leading to affirm that chemistry is debatably non-bonded.

Author Biography

Boaz Galdino de Oliveira, Universidade Federal do Oeste da Bahia- UFOB

Prof. Dr., Chemistry Depto., UFOB, Barreiras, BA,


ABRAHAM, M. H.; GRELLIER, P. L.; PRIOR, D. V.; MORRIS, J. J.; TAYLOR*, P. J. Hydrogen bonding. Part 10. A scale of solute hydrogen-bond basicity using log K values for complexation in tetrachloromethane. Journal of the Chemical Society, Perkin Transactions 2, Cambridge, n. 4, p. 521-529, 1990. DOI: https://doi.org/10.1039/P29900000521.

ADHIKARY, R.; ZIMMERMANN, J.; LIU, J.; FORREST, R. P.; JANICKI, T. D.; DAWSON, P. E.; CORCELLI, S. A.; ROMESBERG*, F. E. Evidence of an unusual N–H···N hydrogen bond in proteins. Journal of the American Chemical Society, Washington, v. 136, p. 13474-13477, 2014. DOI: https://doi.org/10.1021/ja503107h.

ALKORTA, I.; ELGUERO, J.; FRONTERA, A. Not only hydrogen bonds: other noncovalent interactions. Crystals, Basel, v. 10, p. 180-209, 2020. DOI: https://doi.org/10.3390/cryst10030180.

ARUNAN, E.; DESIRAJU, G. R.; KLEIN, R. A.; SADLEJ, J.; SCHEINER, S.; ALKORTA, I.; CLARY, D. C.; CRABTREE, R. H.; DANNENBERG, J. J.; HOBZA, P.; KJAERGAARD, H. G.; LEGON, A. C.; MENNUCCI, B.; NESBITT, D. J. Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Applied Chemistry, Oxford, v. 83, p. 1637-1641, 2011. DOI: https://doi.org/10.1351/PAC-REC-10-01-02.

AYERS, P. W.; FRENKING, G. Richard Bader (1931–2012). Angewandte Chemie International Edition, Weinheim, v. 51, n. 19, p. 4521-4522, 2012. DOI: https://doi.org/10.1002/anie.201201794.

BADER, R. F. W. A quantum theory of molecular structure and its applications. Chemical Reviews, Washington, v. 91, n. 5, p. 893-928, 1991. DOI: https://doi.org/10.1021/cr00005a013.

BADER, R. F. W. Bond paths are not chemical bonds, Journal of Physical Chemistry A, Washington, v. 113, n. 38, p. 10391-10396, 2009. DOI: https://doi.org/10.1021/jp906341r.

BADER, R. F. W. On the non-existence of parallel universes in chemistry. Foundation of Chemistry, [Dordrecht], v. 13, p. 11-37, 2011. DOI: https://doi.org/10.1007/s10698-011-9106-0.

BADER, R. F. W. The zero-flux surface and the topolo-gical and quantum definitions of an atom in a molecule. Theoretical Chemistry Accounts, Berlin, v. 105, p. 276-283, 2001. DOI: https://doi.org/10.1007/s002140000233.

BADER, R. F. W.; HERNÁNDEZ-TRUJILLO, J.; CORTÉS-GUZMÁN, F. Chemical bonding: From Lewis to atoms in molecules. Journal of Computational Chemistry, New York, v. 28, p. 4-14, 2007. DOI: https://doi.org/10.1002/jcc.20528.

BADER, R. F. W.; NGUYEN-DANG, T. T. hspace2cmQuantum theory of atoms in molecules–Dalton revisited. Advances in Quantum Chemistry, [London], v. 14, p. 63-124, 1981. DOI: https://doi.org/10.1016/S0065-3276(08)60326-3.

BAKAR, M. A.; SUGIUCHI, M.; IWASAKI, M.; SHICHIBU, Y.; KONISHI*, K. Hydrogen bonds to Au atoms in coordinated gold clusters. Nature communications, [London], v. 8, p. 1-7, 2017. DOI: https://doi.org/10.1038/s41467-017-00720-3.

BANKIEWICZ, B.; MATCZAK, P.; PALUSIAK, M. Electron density characteristics in Bond Critical Point (QTAIM) versus interaction energy components (sapt): the case of charge-assisted hydrogen bonding. The Journal of Physical Chemistry A, Washington, v. 116, p. 452-459, 2012. DOI: https://doi.org/10.1021/jp210940b.

BAUZÁ, A.; ALKORTA, I.; ELGUERO, J.; MOOIBROEK*, T. J.; FRONTERA, A. Spodium Bonds: Noncovalent interactions involving group 12 elements. Angewandte Chemie International Edition, Weinheim, v. 59, p. 17482-17487, 2020. DOI: https://doi.org/10.1002/anie.202007814.

BAUZÁ, A.; FRONTERA, A. Aerogen bonding interaction: a new supramolecular force? Angewandte Chemie International Edition, Weinheim, v. 54, p. 7340-7343, 2015. DOI: https://doi.org/10.1002/anie.201502571.

BAUZÁ, A.; FRONTERA, A. Regium-π vs Cation-π Interactions in M2 and MCl (M = Cu, Ag and Au) Complexes with Small Aromatic Systems: An ab Initio Study. Inorganics, Basel, v. 6, p. 64-74, 2018. DOI: https://doi.org/10.3390/inorganics6030064.

BAUZÁ, A.; SETH, K. S.; FRONTERA, A. Tetrel bonding interactions at work: Impact on tin and lead coordination compounds. Coordination Chemistry Reviews, Lausanne, v. 384, p. 107-125, 2019. DOI: https://doi.org/10.1016/j.ccr.2019.01.003.

BIEGLER-KÖNIG, F. W.; BADER, R. F. W.; TANG, T. -H. Calculation of the average properties of atoms in molecules. II. Journal of Computational Chemistry, New York, v. 3, p. 317-328, 1982. DOI: https://doi.org/10.1002/jcc.540030306.

BISWAL, H. S.; SAHU, A. K.; FRONTERA, A.; BAUZÁ*, A. Spodium bonds in biological systems: expanding the role of Zn in protein structure and function. Journal of Chemical Information and Modeling. Washington, v. 61, p. 3945-3954, 2021. DOI: https://doi.org/10.1021/acs.jcim.1c00594.

BROOKHART, M.; GREEN, M. L. H.; PARKIN, G. Agostic interactions in transition metal compounds. Proceedings of the National Academy of Sciences, Washington, v. 104, p. 6908-6914, 2007. DOI: https://doi.org/10.1073/pnas.0610747104.

CARVALHO, L. C.; BUENO, M. A.; OLIVEIRA, B. G. The interplay and strength of the π⋯H-F, C⋯H-F, F⋯H-F and F⋯H-C hydrogen bonds upon the formation of multimolecular complexes based on C2H2⋯HF and C2H4⋯HF small dimers. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Amsterdam, v. 213, p. 438-455, 2019. DOI: https://doi.org/10.1016/j.saa.2019.01.004.

CAVALLO, G.; METRANGOLO, P.; MILANI, R.; PILATI, T.; PRIIMAGI, A.; RESNATI*, G.; TERRANEO, G. The halogen bond. Chemical Reviews, Washington, v. 116, p. 2478-2601, 2016. DOI: https://doi.org/10.1021/acs.chemrev.5b00484.

CHAŁASIŃSKI, G.; SZCZĘŚNIAK, M. M. State of the art and challenges of the ab initio theory of intermolecular interactions. Chemical Reviews, Washington, v. 100, p. 4227-4252, 2000. DOI: https://doi.org/10.1021/cr990048z.

CHAVERRI, G. R. The periodic table of elements. Journal of Chemical Education, Tucson, v. 30, p. 632-633, 1953. DOI: https://doi.org/10.1021/ed030p632.

CHEN, X.; BAI, Y.-K.; ZHAO, C.-Z.; SHEN, X.; ZHANG*, Q. Lithium bonds in lithium batteries. Angewandte Chemie International Edition, Weinheim, v. 59, p. 11192-11195, 2020. DOI: https://doi.org/10.1002/anie.201915623.

CHENG, T.; SHEN, D. X.; MENG, M.; MALLICK, S.; CAO, L.; PATMORE, N. J.; ZHANG, H. L.; ZOU, S. F.; CHEN, H. W.; QIN, Y.; WU, Y. Y.; LIU*, C. Y. Efficient electron transfer across hydrogen bond interfaces by proton-coupled and -uncoupled pathways. Nature Communications, [London], v. 10, p. 1-10, 2019. DOI: https://doi.org/10.1038/s41467-019-09392-7.

CHOPRA, D. Advances in understanding of chemical bonding: inputs from experimental and theoretical charge density analysis. Journal of Physical Chemistry A, Washington, v. 116, p. 9791-9801, 2012. DOI: https://doi.org/10.1021/jp306169f.

CRABTREE, R. H. Dihydrogen complexation. Chemical Reviews, Washington, v. 116, p. 8750-8769, 2016. DOI: https://doi.org/10.1021/acs.chemrev.6b00037.

CRABTREE, R. H. Hydrogen bonding & dihydrogen bonding. Encyclopedia of Inorganic and Bioinorganic Chemistry, [Georgia]: Wiley, 2011. DOI: https://doi.org/10.1002/9781119951438.eibc0267.

DEL BENE, J. E.; ALKORTA, I.; SANCHEZ-SANZ, G.; ELGUERO, J. Structures, Energies, Bonding, and NMR Properties of Pnicogen Complexes H2XP:NXH2 (X ═ H, CH3, NH2, OH, F, Cl). Journal of Physical Chemistry A, Washington, v. 115, p. 13724-13731, 2011. DOI: https://doi.org/10.1021/jp2094164.

DESIRAJU, G. R. A bond by any other name. Angewandte Chemie International Edition, Weinheim, v. 50, p. 52-59, 2011. DOI: https://doi.org/10.1002/anie.201002960.

DIXIT, V. A.; RATHI, P. C.; BHARATAM, P. V. Intramolecular dihydrogen bond: A new perspective in Lewis acid catalyzed nucleophilic epoxide ring opening reaction. Journal of Molecular Structure, Amsterdam, v. 962, p. 97-100, 2010. DOI: https://doi.org/10.1016/j.theochem.2010.09.020.

DONG, W.; LI, Q.; SCHEINER, S. Comparative strengths of tetrel, pnicogen, chalcogen, and halogen bonds and contributing factors. Molecules, Basel, v. 23, p. 1681-1698, 2018. DOI: https://doi.org/10.3390/molecules23071681.

DUARTE, D. J. R.; ANGELINA, E. L.; PERUCHENA, N. M. Physical meaning of the QTAIM topological parameters in hydrogen bonding. Journal of Molecular Modeling, Berlin, v. 20, p. 2510-2519, 2014. DOI: https://doi.org/10.1007/s00894-014-2510-3.

EMAMIAN, S.; LU, T.; KRUSE, H.; EMAMIAN, H. Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory. Journal of Computational Chemistry, New York, v. 40, p. 2868-2881, 2019. DOI: https://doi.org/10.1002/jcc.26068.

ESRAFILI, M. D.; MOUSAVIAN, P. Strong tetrel bonds: theoretical aspects and experimental evidence, Molecules, Basel, v. 23, p. 2642-2661, 2018. DOI: https://doi.org/10.3390/molecules23102642.

ESRAFILI, M. D.; MOHAMMADIAN-SABET, F. Tuning tetrel bonds via cation–π interactions: an ab initio study on concerted interaction in M+–C6H5XH3–NCY complexes (M = Li, Na, K; X = Si, Ge; Y = H, F, OH). Molecular Physics, London, v. 114, p. 83-91, 2016. DOI: https://doi.org/10.1080/00268976.2015.1086498.

EVANS, R. C. The structure of atomic nuclei. Journal of Chemical Education, Tucson, v. 19, p. 549-550, 1942. DOI: https://doi.org/10.1021/ed019p549.

FABBRIZZI, L. Beyond the molecule: intermolecular forces from gas liquefaction to X-H···π hydrogen bonds. ChemPlusChem, Weinheim, v. 87, p. e202100243-e202100265, 2022. DOI: https://doi.org/10.1002/cplu.202100243.

FARRUGIA, L. J.; EVANS, C.; LENTZ, D.; ROEMER, M. The QTAIM approach to chemical bonding between transition metals and carbocyclic rings: a combined experimental and theoretical study of (η5-C5H5)Mn(CO)3, (η6-C6H6)Cr(CO)3, and (E)-{(η5-C5H4)CF═CF(η5-C5H4)}(η5-C5H5)2Fe2. Journal of the American Chemical Society, Washington, v. 131, p. 1251-1268, 2009. DOI: https://doi.org/10.1021/ja808303j.

FILGUEIRAS, C. A. L. Duzentos anos da teoria atômica de Dalton. Química Nova na Escola, São Paulo, n. 20, p. 38-44, 2007. DOI: http://qnesc.sbq.org.br/online/qnesc20/v20a07.pdf.

FILGUEIRAS, C. A. L. Gilbert Lewis and the centennial of the electron pair theory of chemical bonding. Química Nova, São Paulo, v. 39, p. 1262-1268, 2016. DOI: http://dx.doi.org/10.21577/0100-4042.20160171.

FRONTERA, A.; BAUZÁ, A. Biological halogen bonds in protein–ligand complexes: a combined QTAIM and NCIPlot study in four representative cases. Organic & Biomolecular Chemistry, Cambridge, v. 19, p. 6858-6864, 2021. DOI: https://doi.org/10.1039/D1OB01212F.

FULTZ, B. The atomic origins of thermodynamics and kinetics. In: FULTZ, B. Phase Transitions in Materials, Cambridge: Cambridge University Press, 2014. p. 125-126. DOI: https://doi.org/10.1017/CBO9781107589865.008.

GARCIA, J.; PODESZWA, R.; SZALEWICZ, K. SAPT: codes for calculations of intermolecular interaction energies. Journal of Chemical Physics, New York, v. 152, p. 184109-184132, 2020. DOI: https://doi.org/10.1063/5.0005093.

GILLESPIE, R. J. The valence-shell electron-pair repulsion (VSEPR) theory of directed valency. Journal of Chemical Education, Tucson, v. 40, p. 295-295, 1963. DOI: https://doi.org/10.1021/ed040p295.

GILLESPIE, R. J.; POPELIER, P. L. A. Chemical bonding and molecular geometry: comments on a book review, a bond by any other name. Angewandte Chemie International Edition, Weinheim, v. 42, p. 3331-3334, 2003. DOI: https://doi.org/10.1002/anie.200320066.

GILLESPIE, R. J.; ROBINSON, E. A. Gilbert N. Lewis and the chemical bond: The electron pair and the octet rule from 1916 to the present day. Journal of Computational Chemistry, New York, v. 28, p. 87-97, 2007. DOI: https://doi.org/10.1002/jcc.20545.

GIMENO, M. C.; HERRERA, R .P. Hydrogen bonding and internal or external Lewis or Brønsted acid assisted (thio)urea catalysts. European Journal of Organic Chemistry, Weinheim, v. 2020, p. 1057-1068, 2020. DOI: https://doi.org/10.1002/ejoc.201901344.

GIUNTA, C. J.; MAINZ, V. V.; GIROLAMI, G. S. 150 Years of the Periodic Table; a commemorative symposium. [ S. l.]: Springer, 2021.

GLENDENING, E. D.; LANDIS, C. R.; WEINHOLD, F. Natural bond orbital methods. WIRES Computational Molecular Science, Hoboken, v. 2, p. 1-42, 2012. DOI: https://doi.org/10.1002/wcms.51.

GODDARD III, W. A.; DUNNING JUNIOR, T. H.; HUNT, W. J.; HAY, P. J. Generalized valence bond description of bonding in low-lying states of molecules. Accounts of Chemical Research, Washington, v. 6, p. 368-376, 1973. DOI: https://doi.org/10.1021/ar50071a002.

GOYMER, P. 100 years of the hydrogen bond. Nature Chemistry, London, v. 4, p. 863-864, 2012. DOI: https://doi.org/10.1038/nchem.1482.

GRABARZ, A.; MICHALCZYK, M.; ZIER-KIEWICZ*, W.; SCHEINER*, S. Anion–anion interactions in aerogen-bonded complexes. influence of solvent environment. Molecules, Basel, v. 26, p. 2116-2129, 2021. DOI: https://doi.org/10.3390/molecules26082116.

GRABOWSKI, S. J. Boron and other triel Lewis acid centers: from hypovalency to hypervalency. ChemPhysChem, Weinheim, v. 15, p. 2985-2993, 2014. DOI: https://doi.org/10.1002/cphc.201402344.

GRABOWSKI, S. J. [FHF]-—The strongest hydrogen bond under the influence of external interactions. Crystals, Basel, v. 6, p. 3-19; 2016. DOI: https://doi.org/10.3390/cryst6010003.

GRABOWSKI, S. J. Hydrogen bond – definitions, criteria of existence and various types. In: GRABOWSKI, S. J. Understanding hydrogen bonds: theoretical and experimental views. Cambridge: Royal Society of Chemistry, 2020. p. 1-40, 2020a. DOI: https://doi.org/10.1039/9781839160400-00001.

GRABOWSKI, S. J. Hydrogen Bond and other Lewis acid–Lewis base interactions as preliminary stages of chemical reactions. Molecules, Basel, v. 25, p. 4668-4676, 2020b. DOI: https://doi.org/10.3390/molecules25204668.

GRABOWSKI, S. J. Triel bond and coordination of triel centres: comparison with hydrogen bond interaction. Coordination Chemistry Reviews, Lausanne, v. 407, p. 213171-213190, 2020c. DOI: https://doi.org/10.1016/j.ccr.2019.213171.

GRABOWSKI, S. J. What is the covalency of hydrogen bonding?. Chemical Reviews, Washington, v. 111, p. 2597-2625, 2011. DOI: https://doi.org/10.1021/cr800346f.

GRABOWSKI, S. J.; LIPKOWSKI, P. Characteristics of X-H···π Interactions: Ab Initio and QTAIM Studies. Journal of Physical Chemistry A, Washington, v. 115, p. 4765-4773, 2011. DOI: https://doi.org/10.1021/jp2005327.

GRABOWSKI, S. J.; SOKALSKIC, W. A.; LESZCZYNSKI, J. Hydride bonding – Ab initio studies of BeH2∙∙∙Li+, BeH2∙∙∙Na+ and BeH2∙∙∙Mg2+ model systems. Chemical Physics Letters, Amsterdam, v. 422, p. 334-339, 2006. DOI: https://doi.org/10.1016/j.cplett.2006.01.120.

HABERHAUER, G.; GLEITER, R. The nature of strong chalcogen bonds involving chalcogen-containing heterocycles. Angewandte Chemie International Edition, Weinheim, v. 59, p. 21236-21243, 2020. DOI: https://doi.org/10.1002/anie.202010309.

HAPKA, M.; MODRZEJEWSKI, M.; CHAŁA-SIŃSKI, G.; SZCZĘŚNIAK*, M. M. Assessment of SAPT(DFT) with meta-GGA functionals. Journal of Molecular Modeling, Berlin, v. 26, p. 102-111, 2020. DOI: https://doi.org/10.1007/s00894-020-4340-9.

HEINDEL, J. P.; KNODEL, E. S.; SCHOFIELD, D. P. Origin of many-body vibrational frequency shifts in water clusters. Journal of Physical Chemistry A, Washington, v. 122, p. 6724-6735, 2018. DOI: https://doi.org/10.1021/acs.jpca.8b04380.

HELLIWELL, J. R. Concerning the measurement of charge density X-ray diffraction data at synchrotron sources: challenges and opportunities. Crystallography Reviews, New York, v. 23, p. 238-251, 2017. DOI: https://doi.org/10.1080/0889311X.2017.1295038.

HILL, J. G. The halogen bond in thiiraneClF: an example of a Mulliken inner complex. Physical Chemistry Chemical Physics, Cambridge, v. 16, p. 19137-19140, 2014. DOI: https://doi.org/10.1039/C4CP03412K.

HIRSHFELD, F. L. Bonded-atom fragments for describing molecular charge densities. Theoretica Chimica Acta, Berlin, v. 44, p. 129-138, 1977a. DOI: https://doi.org/10.1007/BF00549096.

HIRSHFELD, F. L. XVII. Spatial partitioning of charge density. Israel Journal of Chemistry, Jerusalem, v. 16, p. 198-201, 1977b. DOI: https://doi.org/10.1002/ijch.197700033.

HOJA, J.; SAX, A. F.; SZALEWICZ, K. Is electrostatics sufficient to describe hydrogen-bonding interactions? Chemistry an European Journal, Tucker, v. 20, p. 2291-2230, 2014. DOI: https://doi.org/10.1002/chem.201303528.

HOLSTEIN, T. Studies of polaron motion: part I. the molecular-crystal model. Annals of Physics, New York, v. 8, p. 325-342, 1959. DOI: https://doi.org/10.1016/0003-4916(59)90002-8.

HONG; L.; CHEN, Y.-Q. Nature and structural property of dihydrogen-bond complexes of BeH2 with hydrogen halides. Acta Physico-Chimica Sinica, Beijing, v. 23, p. 1974-1978, 2007. DOI: https://doi.org/10.3866/PKU.WHXB20071227.

HUNTER, K. H.; RODRIGUEZ, J.-M. G. BECKER, M. N. A review of research on the teaching and learning of chemical bonding. Journal of Chemical Education, Tucson, v. 99, p. 2451-2464, 2022. DOI: https://doi.org/10.1021/acs.jchemed.2c00034.

IBRAHIM, M. A. A.; MOUSSA, N. A. M. Unconventional type III halogen···halogen interactions: a quantum mechanical elucidation of σ-hole···σ-hole and di-σ-hole interactions. ACS Omega, Washington, v. 5, p. 21824-21835, 2020. DOI: https://doi.org/10.1021/acsomega.0c02887.

IRIBARREN, I.; SÁNCHEZ-SANZ, G.; ALKORTA, I.; ELGUERO, J.; TRUJILLO*, C. Evaluation of electron density shifts in noncovalent interactions. Journal of Physical Chemistry A, Washington, v. 125, p. 4741-4749, 2021. DOI: https://doi.org/10.1021/acs.jpca.1c00830.

IUPAC. Compendium of Chemical Terminology. 2nd ed. Oxford: Blackwell Scientific Publications, 2019. Available from: https://goldbook.iupac.org/terms/view/AT06984. Access in: Sept. 2022.

JABŁOŃSKI, M. A critical overview of current theoretical methods of estimating the energy of intramolecular interactions, Molecules, Basel, v. 25, p. 5512-5548, 2020. DOI: https://doi.org/10.3390/molecules25235512.

JABŁOŃSKI, M. Does the presence of a bond path really mean interatomic stabilization? The case of the Ng@Superphane (Ng = He, Ne, Ar, and Kr) endohedral complexes. Symmetry, Basel, v. 13, p. 2241-2256, 2021. DOI: https://doi.org/10.3390/sym13122241.

JABŁOŃSKI, M.; PALUSIAK, M. Nature of a hydride–halogen bond: a SAPT-, QTAIM, and NBO-based study, Journal of Physical Chemistry A, Washington, v. 116, p. 2322-2332, 2012. DOI: https://doi.org/10.1021/jp211606t.

JALILOV, A.; DEATS, S.; ALBUKHARI, M.; ZELLER, M.; ROSOKHA*, S. V. Intermolecular interactions between halogen-substituted p-benzoquinones and halide anions: anion-π complexes versus halogen bonding. ChemPhysChem, Weinheim, v. 85, p. 441-449, 2020. DOI: https://doi.org/10.1002/cplu.202000012.

JEZIORSKI, B., MOSZYNSKI, R., SZALEWICZ, K. Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chemical Reviews, Washington, v. 94, p. 1887-1930, 1994. DOI: https://doi.org/10.1021/cr00031a008.

JIMÉNEZ-GRÁVALOS, F.; SUÁREZ, D. A quantum chemical topology picture of intermolecular electrostatic interactions and charge penetration energy. Journal of Chemical Theory and Computation, Washington, v. 17, p. 4981-4995, 2021. DOI: https://doi.org/10.1021/acs.jctc.1c00263.

KAMAL, D.; CHANDRASEKARAN, A.; BATRA, R.; RAMPRASAD*, R. A charge density prediction model for hydrocarbons using deep neural networks. Machine Learning: Science and Technology, [Bristol], v. 1, p. 025003-025015, 2020. DOI: https://doi.org/10.1088/2632-2153/ab5929.

KARACHI, S. S.; ESKANDARI, K. Boron triel bonds: a quantum chemical topology perspective. ChemistrySelect, Weinheim, v. 6, p. 12431-12439, 2021. DOI: https://doi.org/10.1002/slct.202103002.

KELLETT, C. W.; KENNEPOHL, P.; BERLINGUETTE, C. P. π covalency in the halogen bond. Nature Communications, [London], v. 11, p. 1-8, 2020. DOI: https://doi.org/10.1038/s41467-020-17122-7.

KOJIĆ-PRODIĆ, B.; MOLČANOV, K. The nature of hydrogen bond: new insights into old theories. Acta Chimica Slovenica, Ljubljana, v. 55, p. 692-708, 2008.

KURNIAWAN, O.; KOH, L. L. A.; CHENG, J. Z. M.; PEE, M. Helping students connect interdisciplinary concepts and skills in physical chemistry and introductory computing: solving schrödinger’s equation for the hydrogen atom. Journal of Chemical Education, Tucson, v. 96, p. 2202-2207, 2019. DOI: https://doi.org/10.1021/acs.jchemed.9b00068.

LEWIS, G. N. The atom and the molecule. Journal of the American Chemical Society, Washington, v. 38, p. 762-785, 1916. DOI: https://doi.org/10.1021/ja02261a002.

LI, Q.; YUAN, H.; JING, B.; LIU, Z.; LI, W.; CHENG, J.; GONG, B.; SUN, J. Theoretical study of halogen–hydride halogen bonds F3CL···HM (L = Cl, Br; M = Li, BeH, MgH) complexes. Molecular Physics, London, v. 108, p. 611-617, 2010. DOI: https://doi.org/10.1080/00268971003630703.

LIU, Y.; PENG, B.; WANG, X.; XIE, Y.; SCHAEFER III*, H.F. The nature of lithium bonding in C2H2Li2, C6Li6, and lithium halide dimers. Organometallics, Washington, v. 38, p. 4708-4716, 2019. DOI: https://doi.org/10.1021/acs.organomet.9b00683.

LU, Y.-X.; ZOU, J.-W.; WANG, Y.-H.; YU. Q.-S. Substituent effects on noncovalent halogen/π interactions: Theoretical study. International Journal of Quantum Chemistry, New York, v. 107, p. 1479-1486, 2007. DOI: https://doi.org/10.1002/qua.21279.

MACCHI, P. Modern charge density studies: the entanglement of experiment and theory. Crystallography Reviews, New York, v. 19, p. 58-101, 2013. DOI: https://doi.org/10.1080/0889311X.2013.785538.

MAGNUSSEN, O. M.; GRObeta, A.; Toward an atomic-scale understanding of electrochemical interface structure and dynamics. Journal of the American Chemical Society, Washington, v. 141, p. 4777-4790, 2019. DOI: https://doi.org/10.1021/jacs.8b13188.

MAHMUDOV, K. T.; GURBANOV, A. V.; ALIYEV, V. A.; RESNATI, G.; POMBEIRO, A. J. L. Pnictogen bonding in coordination chemistry. Coordination Chemistry Reviews, Lausanne, v. 418, p. 213381-213394, 2020. DOI: https://doi.org/10.1016/j.ccr.2020.213381.

MANSOOR, N. Foundations of modern atomic theory: Thomson, Rutherford, and Bohr. In: MANSOOR, N. Critical Appraisal of Physical Science as a Human Enterprise. Dordrecht: Springer Dordrecht, 2009. v. 36, p. 75-95. DOI: https://doi.org/10.1007/978-1-4020-9626-6_6.

MATTA, C. F. Special issue: Philosophical aspects and implications of the quantum theory of atoms in molecules (QTAIM). Foundations of Chemistry, [Dordrecht], v. 15, p. 245-251, 2013. DOI: https://doi.org/10.1007/s10698-013-9194-0.

MÁTYUS, E. Pre-Born–Oppenheimer molecular structure theory. Molecular Physics, London, v. 117, p. 590-609, 2019. DOI: https://doi.org/10.1080/00268976.2018.1530461.

MEOT-NER, M(MAUTNER). The ionic hydrogen bond. Chemical Reviews, Washington, v. 105, p. 213-284, 2005. DOI: https://doi.org/10.1021/cr9411785.

MONDAL, A.; DATTA, S. Quantum mechanical electronic structure calculation reveals orientation dependence of hydrogen bond energy in proteins. Proteins, New York, v. 85, p. 1046-1055, 2017. DOI: https://doi.org/10.1002/prot.25271.

MURPHY, L. R.; MEEK, T. L.; ALLRED, A. L.; ALLEN*, L. C. Evaluation and test of Pauling's electronegativity scale. Journal of Physical Chemistry A, Washington, v. 104, p. 5867-5871, 2000. DOI: https://doi.org/10.1021/jp000288e.

MURRAY, J. S.; LANE, P.; CLARK, T.; POLITZER, P. σ-hole bonding: molecules containing group VI atoms. Journal of Molecular Modeling, Berlin, v. 13, p. 1033-1038, 2007. DOI: https://doi.org/10.1007/s00894-007-0225-4.

NÄTHER, C.; JESS, I.; JONES*, P. G.; TAOUSS, C.; TESCHMIT, N. Structural, thermodynamic, and kinetic aspects of the polymorphism of trimethylthiourea: the influence of kinetics on the transformations between polymorphs. Crystal Growth & Design, Washington,, v. 13, p. 1676-1684, 2013. DOI: https://doi.org/10.1021/cg400005d.

NZIKO, V. P. N.; SCHEINER, S. Comparison of π-hole tetrel bonding with σ-hole halogen bonds in complexes of XCN (X = F, Cl, Br, I) and NH_3. Physical Chemistry Chemical Physics, Cambridge, v. 18, p. 3581-3590, 2016. DOI: https://doi.org/10.1039/C5CP07545A.

OLIVEIRA, B. G. Teoria quântica de átomos em moléculas. Revista Brasileira de Ensino de Física, São Paulo, v. 42, p. e20190061-e20190069, 2020. DOI: https://doi.org/10.1590/1806-9126-RBEF-2019-0061.

OLIVEIRA, B. G. The interaction strength, frequency-shifts and covalence of the C_2H_4O···HOCl and C_2H_5N···HOCl heterocyclic complexes. Orbital: The Electronic Journal Of Chemistry, Campo Grande, v. 9, p. 95-99, 2017. DOI: http://dx.doi.org/10.17807/orbital.v9i2.853.

OLIVEIRA, B. G. Theoretical estimation of pnicogen bonds and hydrogen bonds in small heterocyclic complexes: Red-shifts and blue-shifts ruled by polarization effects. Chemical Physics, New York, v. 443, p. 67-75, 2014. DOI: http://dx.doi.org/10.1016/j.chemphys.2014.09.001.

OLIVEIRA, B. G.; ARAÚJO, R. C. M. U. SAPT: hydrogen bond or van der Waals interaction? Química Nova, São Paulo, v. 35, p. 2002-2012, 2012. DOI: https://doi.org/10.1590/S0100-40422012001000021.

PADASH, R.; ESFAHANI, M. R.; RAD, A. S. The computational quantum mechanical study of sulfamide drug adsorption onto X_12Y_12 fullerene-like nanocages: detailed DFT and QTAIM investigations. Journal of Biomolecular Structure and Dynamics, Guilderland, v. 39, p. 5427-5437, 2021. DOI: https://doi.org/10.1080/07391102.2020.1792991.

PASCOE, D. J.; LING, K. B.; COCKROFT, S. L. The origin of chalcogen-bonding interactions. Journal of the American Chemical Society, Washington, v. 139, p. 15160-15167, 2017. DOI: https://doi.org/10.1021/jacs.7b08511.

PATKOWSKI, K. Recent developments in symmetry-adapted perturbation theory, WIRES Computational Molecular Science, Hoboken, v. 10, p. e1452-2e1498, 2020. DOI: https://doi.org/10.1002/wcms.1452.

PHIPPS, M. J. S.; FOX, T.; TAUTERMANN, C. S.; SKYLARIS*, C. -K. Energy decomposition analysis approaches and their evaluation on prototypical protein–drug interaction patterns. Chemical Society Reviews, Letchworth, v. 44, p. 3177-3211, 2015. DOI: https://doi.org/10.1039/C4CS00375F.

PIETSCH, U.; HANSEN, N. K. A critical review of the experimental valence charge density of GaAs, Acta crystallographica B, Oxford, v. 52, p. 596-604, 1996. DOI: https://doi.org/10.1107/S0108768196003576.

PIMENTEL, G. C.; MCCLELLAN, A. L. Hydrogen bonding. Annual Review of Physical Chemistry, Palo Alto, v. 22, p. 347-385, 1971. DOI: https://doi.org/10.1146/annurev.pc.22.100171.002023.

PIÑA, M. N.; FRONTERA, A.; BAUZÁ, A. Regium-π bonds are involved in protein-gold binding. Journal of Physical Chemistry Letters, Washington, v. 11, p. 8259-8263, 2020. DOI: https://doi.org/10.1021/acs.jpclett.0c02295.

PISANO, L.; FARRIOL, M.; ASENSIO, X.; GALLARDO, I.; GONZÁLEZ-LAFONT, A.; LLUCH, J. M.; MARQUET*, J. Thermodynamics, Kinetics, and dynamics of the two alternative aniomesolytic fragmentations of C-O bonds: an electrochemical and theoretical study. Journal of the American Chemical Society, Washington, v. 124, p. 4708-4715, 2002. DOI: https://doi.org/10.1021/ja012444g.

PRASANNAA, M. D.; ROW, T. N. G. C-halogen···π interactions and their influence on molecular conformation and crystal packing: a database study. Crystal Engineering, [ s. l.], v. 3, p. 135-154, 2000. DOI: https://doi.org/10.1016/S1463-0184(00)00035-6.

RACKERS, J. A.; PONDER, J. W. Classical Pauli repulsion: An anisotropic, atomic multipole model. Journal of Chemical Physics, Melville, v. 150, p. 084104-084127, 2019. DOI: https://doi.org/10.1063/1.5081060.

RAHAMAN, O.; DOREN, D.J.; DI TORO, D. M. Quantum mechanical estimation of Abraham hydrogen bond parameters using 1:1 donor–acceptor complexes. Journal of Physical Organic Chemistry, Chichester, v. 27, p. 783-793, 2014. DOI: https://doi.org/10.1002/poc.3337.

REGO, D.; OLIVEIRA, B. G. A new vision of the DNA triple-helix: structural, spectroscopic and electronic parameters for hydrogen bonding for Watson-Crick and Hoogsteen pairing. Semina: Ciências Exatas e Tecnológicas, Londrina, v. 41, p. 59-70, 2020. DOI: https://doi.org/10.5433/1679-0375.2020v41n1p59.

RILEY, K. E.; HOBZA, P. Investigations into the nature of halogen bonding including symmetry adapted perturbation theory analyses. Journal of Chemical Theory and Computation,Washington, v. 4, p. 232-242, 2008. DOI: https://doi.org/10.1021/ct700216w.

RITTER, S. K. The art of the chemical bond. ACS Central Science, Washington, v. 2, p. 769-772, 2016. DOI: https://doi.org/10.1021/acscentsci.6b00337.

RODRÍGUEZ, J. I.; URIBE, E. A.; BALTAZAR-MÉNDEZ, M. I.; AUTSCHBACH, J.; CASTILLO-ALVARADO, F. L.; GUTIÉRREZ-GONZÁLEZ, I. Size evolution relativistic DFT-QTAIM study on the gold cluster complexes Au_4-S-C_nH_2n-S'-Au_4' (n = 2-5). Chemical Physics Letters, Amsterdam, v. 660, p. 287-294, 2016. DOI: https://doi.org/10.1016/j.cplett.2016.08.038.

ROJAS, S.; PARRAVICINI, O.; VETTORAZZI, M.; TOSSO, R.; GARRO, A.; GUTIÉRREZ, L.; ANDÚJAR, S.; ENRIZ*, R. Combined MD/QTAIM techniques to evaluate ligand-receptor interactions. Scope and limitations. European Journal of Medicinal Chemistry, Paris, v. 208, p. 112792-112807, 2020. DOI: https://doi.org/10.1016/j.ejmech.2020.112792.

ROOTHAAN, C. C. J. New developments in molecular orbital theory. Reviews of Modern Physics, New York, v. 23, p. 69-89, 1951. DOI: https://doi.org/10.1103/RevModPhys.23.69.

RZEPA, R. S. The importance of being bonded. Nature Chemistry, London, v. 1, p. 510-512, 2009. DOI: https://doi.org/10.1038/nchem.373.

SAGGU, M.; LEVINSON, N. M.; BOXER, S. G. Experimental quantification of electrostatics in X–H···π hydrogen bonds. Journal of the American Chemical Society, Washington, v. 134, p. 18986-18997, 2012. DOI: https://doi.org/10.1021/ja305575t.

SÁNCHEZ-SANZ, G.; TRUJILLO, C.; ALKORTA, I.; ELGUERO, J. Understanding regium bonds and their competition with hydrogen bonds in Au_2:HX complexes. ChemPhysChem, Weinheim, v. 17, p. 1572-1580, 2019. DOI: https://doi.org/10.1002/cphc.201900354.

SANNIGRAHI, A. B.; KAR, T.; NIYOGI, B. G.; HOBZA, P.; SCHLEYER*, P. V. R. The lithium bond reexamined. Chemical Reviews, Washington,, v. 90, p. 1061-1076, 1990. DOI: https://doi.org/10.1021/cr00104a007.

SANTOS, L. A.; HAMLIN, T. A.; RAMALHO, T. C.; BICKELHAUPT*, F. M. The pnictogen bond: a quantitative molecular orbital Picture. Physical Chemistry Chemical Physics, Cambridge, v. 23, p. 13842-13852, 2021.DOI: https://doi.org/10.1039/D1CP01571K.

SCERRI, E. R. What is an element? What is the periodic table? And what does quantum mechanics contribute to the question? Foundation of Chemistry, [Dordrecht], v. 14, p. 69-81, 2012. DOI: https://10.1007/s10698-011-9124-y.

SCHEINER, S. A new noncovalent force: Comparison of P···N interaction with hydrogen and halogen bonds. Journal of Chemical Physics, Melville, v. 134, p. 094315-094324, 2011. DOI: https://doi.org/10.1063/1.3562209.

SCHEINER, S. Origins and properties of the tetrel bond. Physical Chemistry Chemical Physics, Cambridge, v. 23, p. 5702-5717, 2021. DOI: https://doi.org/10.1039/D1CP00242B.

SCHEINER, S. Tetrel bonds. Molecules, Basel, 2019.

SCHERER, W.; MCGRADY, G. S. Agostic interactions in d0 metal alkyl complexes. Angewandte Chemie International Edition, Weinheim, v. 43, p. 1782-1806, 2004. DOI: https://doi.org/10.1002/anie.200200548.

SCHMIDBAUR, H.; RAUBENHEIMER, H. G.; DOBRZAŃSKA, L. The gold–hydrogen bond, Au–H, and the hydrogen bond to gold, Au···H–X. Chemical Society Reviews, Letchworth, v. 43, p. 345-380, 2014. DOI: https://doi.org/10.1039/C3CS60251F.

SCHNEIDER, H.-J. Noncovalent interactions: a brief account of a long history. Journal of Physical Organic Chemistry, Chichester, v. 35, p. e4340-e4350, 2022. DOI: https://doi.org/10.1002/poc.4340.

SEABORG, G. T. The research style of Gilbert N. Lewis acids and bases. Journal of Chemical Education, Tucson, v. 61, p. 93-100, 1984. DOI: https://doi.org/10.1021/ed061p93.

SHAH, M. B.; LIU, J.; ZHANG, Q.; STOUT, C. D.; HALPERT, J. R. Halogen-π interactions in the cytochrome P450 active site: structural insights into human CYP2B6 substrate selectivity. ACS Chemical Biology, Washington, v. 12, p. 1204-1210, 2017. DOI: https://doi.org/10.1021/acschembio.7b00056.

SHISHKINA, S. V.; DYAKONENKO, V. V.; SHISHKIN, O. V.; SEMYNOZHENKO, V. P.; BOGASHCHENKO, T. Y.; LYAPUNOV, A. Y.; KIRICHENKO, T. I. Halogen···π interactions in the complexes of fluorenonophane with haloforms. Structural Chemistry, Deerfield Beach, v. 33, p. 257-266, 2022. DOI: https://doi.org/10.1007/s11224-021-01839-2.

STENLID, J. H.; JOHANSSON, A. J.; BRINCK, T. σ-Holes and σ-lumps direct the Lewis basic and acidic interactions of noble metal nanoparticles: introducing regium bonds. Physical Chemistry Chemical Physics, Cambridge, v. 20, p. 2676-2692, 2018. DOI: https://doi.org/10.1039/C7CP06259A.

ŠTĚPÁNEK, P.; CORIANI, S.; SUNDHOLM, D.; OVCHINNIKOV, V. A.; VAARA, J. Relation between molecular electronic structure and nuclear spin-induced circular dichroism. Scientific Reports, [ s. l.], v. 7, p. 1-11, 2017. DOI: https://doi.org/10.1038/srep46617.

SUMA, N.; ARULDHAS*, D.; JOE, I. H.; ANUF, A. R.; ARUN SASI, B. S. Spectroscopic, quantum chemical, QTAIM analysis, molecular dynamics simulation, docking studies and solvent effect of pyridin-2-yl oxyacetic acid herbicide and its derivatives. Journal of Molecular Structure, Amsterdam, v. 1206, p. 127677-127695, 2020. DOI: https://doi.org/10.1016/j.molstruc.2019.127677.

SYZGANTSEVA, O. A.; TOGNETTI, V.; JOUBERT, L. On the physical nature of halogen bonds: a QTAIM study. Journal of Physical Chemistry A, Washington, v. 113, p. 8969-8990, 2013. DOI: https://doi.org/10.1021/jp4059774.

SZALEWICZ, K. Symmetry-adapted perturbation theory of intermolecular forces. WIRES Computational Molecular Science, Hoboken, v. 2, p. 254-272, 2012. DOI: https://doi.org/10.1002/wcms.86.

TANTARDINI, C.; OGANOV, A. Thermochemical electronegativities of the elements. Nature Communications, [London], v. 12, p. 1-9, 2021. DOI: https://doi.org/10.1038/s41467-021-22429-0.

TRUJILLO, C.; SÁNCHEZ-SANZ*, G. ALKORTA, I.; ELGUERO, J. Halogen, Chalcogen and Pnictogen Interactions in (XNO2)2 Homodimers (X = F, Cl, Br, I). New Journal of Chemistry, Cambridge, v. 39, p. 6791-6802, 2015. DOI: https://doi.org/10.1039/C5NJ00600G.

TURUNEN, L.; ERDÉLYI, M. Halogen bonds of halonium ions. Chemical Society Reviews, Letchworth, v. 49, p. 2688-2700, 2020. DOI: https://doi.org/10.1039/D0CS00034E.

UMEYAMA, H.; MOROKUMA, K. The origin of hydrogen bonding. An energy decomposition study. Journal of the American Chemical Society, Washington, v. 99, p. 1316-1332, 1977. DOI: https://doi.org/10.1021/ja00447a007.

URNER, L. M.; LEE, G. Y; TREACY, J. W.; TURLIK, A.; KHAN, S. I.; HOUK, K. N.; JUNG*, M. E. Intramolecular N-H···F hydrogen bonding interaction in a series of 4-anilino-5-fluoroquinazolines: experimental and theoretical characterization of electronic and conformational effects. Chemistry an European Journal, Tucker, v. 28, p. e202103135-e202103219, 2022. DOI: https://doi.org/10.1002/chem.202103135.

VAN DER LUBBE, S. C. C.; GUERRA, C. F. The nature of hydrogen bonds: a delineation of the role of different energy components on hydrogen bond strengths and lengths. Chemistry an European Journal, Tucker, v. 14, p. 2760-2769, 2019. DOI: https://doi.org/10.1002/asia.201900717.

VARADWAJ, A.; VARADWAJ, P. R.; MARQUES, H. M.; YAMASHITA, K. The Pnictogen bond, together with other non-covalent interactions, in the rational design of one-, two- and three-dimensional organic-inorganic hybrid metal halide perovskite semiconducting materials, and beyond. International Journal of Molecular Sciences, Basel, v. 23, p. 8816-8876, 2022a. DOI: https://doi.org/10.3390/ijms23158816.

VARADWAJ, A.; VARADWAJ, P.R.; MARQUES, H.M.; YAMASHITA, K. The pnictogen bond: the covalently bound arsenic atom in molecular entities in crystals as a pnictogen bond donor. Molecules, Basel, v. 27, p. 3421-3473, 2022b. DOI: https://doi.org/10.3390/molecules27113421.

VARADWAJ, P. R. Does oxygen feature chalcogen bonding? Molecules, Basel, v. 24, p. 3166-3183, 2019. DOI: https://doi.org/10.3390/molecules24173166.

VARADWAJ, P.; VARADWAJ, A.; MARQUES, H. Very strong chalcogen bonding: Is oxygen in molecules capable of forming it? a first-principles perspective. Authorea, Hoboken, p. 1-25, 2020. DOI: 10.22541/au.159248992.24101274.

VARGAS, R.; GARZA, J.; DIXON, D. A.; HAY*, B. P. How strong is the Cα-H···O = C hydrogen bond? Journal of the American Chemical Society, Washington, v. 122, p. 4750-4755, 2000. DOI: https://doi.org/10.1021/ja993600a.

VEIS, L.; VIŠŇÁK, J.; NISHIZAWA, H.; NAKAI, H.; PITTNER*, J. Quantum chemistry beyond Born– Oppenheimer approximation on a quantum computer: A simulated phase estimation study. International Journal of Quantum Chemistry, New York, v. 116, p. 1328-1336, 2016. DOI: https://doi.org/10.1002/qua.25176.

VIANA, H. E. B.; PORTO, P. A. O processo de elaboração da teoria atômica de John Dalton. Química Nova na Escola, São Paulo, n. 20, p. 4-12, 2007. DOI: http://qnesc.sbq.org.br/online/cadernos/07/a03.pdf.

VLADILO, G. HASSANALI, A. Hydrogen bonds and life in the universe. Life, Basel, v. 8, p. 1-22, 2018. DOI: http://doi.org/10.3390/life8010001.

VOGEL, L.; WONNER, P.; HUBER, S. M. Chalcogen bonding: an overview. Angewandte Chemie International Edition, Weinheim, v. 58, p. 1880-1891, 2019. DOI: https://doi.org/10.1002/anie.201809432.

VON DER LINDEN, W.; BERGER, E.; VALÁŠEK, P. The Hubbard-Holstein model. Journal of Low Temperature Physics, New York, v. 99, p. 517-525, 1995. DOI: https://doi.org/10.1007/BF00752333.

WANG, L.; LI, X.; ZENG, Y.; MENG, L.; ZHANG*, X. Enhancing effects of π-hole tetrel bonds on the σ-hole interactions in complexes involving F2TO (T=Si, Ge, Sn). Structural Chemistry, Deerfield Beach, v. 30, p. 1301-1313, 2019. DOI: https://doi.org/10.1007/s11224-018-1274-2.

WANG, R.; LIU, H.; LI*, Q.; SCHEINER*, S. Xe···chalcogen aerogen bond. Effect of substituents and size of chalcogen atom. Physical Chemistry Chemical Physics, Cambridge, v. 22, p. 4115-4121, 2020. DOI: https://doi.org/10.1039/C9CP06648A.

WANG, S. -J.; LI, Y.; WU, D.; LI*, Z. -R. Metal hydrides as sodium bond acceptors: hydride-sodium bond in the XH···NaH (X = HBe, LiBe, NaBe, HMg, LiMg, and NaMg) complexes. Molecular Physics, London, v. 110, p. 3053-3060, 2012. DOI: https://doi.org/10.1080/00268976.2012.695807.

WANG, X.; LI, B.; LI, Y.; WANG*, H.; NI, Y.; WANG, H. The influence of monomer deformation on triel and tetrel bonds between TrR3/TR4 (Tr = Al, Ga, In; T = Si, Ge, Sn) and N-base (N-base = HCN, NH3, CN-). Computational and Theoretical Chemistry, Amsterdam, v. 1201, p. 113268-113277, 2021. DOI: https://doi.org/10.1016/j.comptc.2021.113268.

WEINHOLD, F.; LANDIS, C. R.; GLENDENING, E. D. What is NBO analysis and how is it useful? International Reviews in Physical Chemistry, Sevenoaks, v. 35, p. 399-440, 2016. DOI: https://doi.org/10.1080/0144235X.2016.1192262.

WYSOKINSKI*, R.; ZIERKIEWICZ, W.; MICHALCZYK, M.; SCHEINER*, S. How many pnicogen bonds can be formed to a central atom simultaneously? Journal of Physical Chemistry A, Washington, v. 124, p. 2046-2056, 2020. DOI: https://dx.doi.org/10.1021/acs.jpca.0c00257.

XIA, T.; LI, D.; CHENG, L. Theoretical analysis of the spodium bonds in HgCl2···L (L = ClR, SR2, and PR3) dimers. Chemical Physics, Cambridge, v. 539, p. 110978, 2020. DOI: https://doi.org/10.1016/j.chemphys.2020.110978.

YÁÑEZ, M.; SANZ, P.; MÓ, O.; ALKORTA, I.; ELGUERO, J. Beryllium bonds, do they exist? Journal of Chemical Theory and Computation, Washington, v. 5, p. 2763-2771, 2009. DOI: https://doi.org/10.1021/ct900364y.

YANG, Q.; WU, Q.; ZHANG, X.; YANG, X.; LI*, Q. Hydrogen and halogen bonds formed by MCO3 (M=Zn, Cd) and their enhancement by a spodium bond. Molecular Physics, London, v. 120, n. 14, 2022. DOI: https://doi.org/10.1080/00268976.2022.2102548.

YOURDKHANI, S.; KORONA, T.; HADIPOUR, N. L. Interplay between tetrel and triel bonds in RC6H4CNMF3CNBX3 complexes: a combined symmetry-adapted perturbation theory, møller-plesset, and quantum theory of atoms-in-molecules study. Journal of Computational Chemistry, New York, v. 36, p. 2412-2428, 2015. DOI: https://doi.org/10.1002/jcc.24226.

ZHANG, J., CHEN, P., YUAN, B., JI, W., CHENG, Z., QIU*, X. Real-space identification of intermolecular bonding with atomic force microscopy. Science, Washington, v. 342, p. 611-614, 2013. DOI: https://doi.org/10.1126/science.1242603.

ZHANG, Z.; LI, D.; JIANG, W; WANG*, Z. The electron density delocalization of hydrogen bond systems. Advances in Physics: X, Oxford, v. 3, p. 297-314, 2018. DOI: https://doi.org/10.1080/23746149.2018.1428915.

ZHUANG, W. R.; WANG, Y.; CUI, P.-F.; XING, L.; LEE, J.; KIM, D.; JIANG, H.-L.; OH*, Y.-K. Applications of π-π stacking interactions in the design of drug-delivery systems. Journal of Controlled Release, Amsterdam v. 294, p. 311-326, 2019. DOI: https://doi.org/10.1016/j.jconrel.2018.12.014.

ZIERKIEWICZ, W.; MICHALCZYK, M.; SCHEINER, S. Aerogen bonds formed between AeOF2 (Ae = Kr, Xe) and diazines: comparisons between σ-hole and π-hole complexes. Physical Chemistry Chemical Physics, Cambridge, v. 20, p. 4676-4687, 2018. DOI: https://doi.org/10.1039/C7CP08048D.




How to Cite

Oliveira, B. G. de. (2023). Why much of Chemistry may be indisputably non-bonded?. Semina: Ciências Exatas E Tecnológicas, 43(2), 211–229. https://doi.org/10.5433/1679-0375.2022v43n2p211



Review Articles