Porque grande parte da Química pode ser indiscutivelmente não ligada?

Porque grande parte da Química pode ser indiscutivelmente não ligada?

Autores

DOI:

https://doi.org/10.5433/1679-0375.2022v43n2p211

Palavras-chave:

interações intermoleculares, tabela periódica, métodos teóricos, não-ligado

Resumo

Neste compêndio, o amplo escopo de todas as interações intermoleculares já conhecidas foi revisitado, em particular dando ênfase à capacidade de muitos dos elementos da tabela periódica de formar contatos não covalentes. Podem ser citadas tanto ligações de hidrogênio, ligações de di-hidrogênio, ligações de halogênio, ligações de pnictogênio, ligações de calcogênio, ligações de triel, ligações de tetrel, ligações de regium, ligações de espódio ou mesmo as interações de ligações aerogênicas. Obviamente que técnicas experimentais têm sido utilizadas em alguns trabalhos, mas foi através dos métodos teóricos que estas interações foram validadas, onde as integrações QTAIM e as partições de energia SAPT têm sido úteis neste sentido. Portanto, o grande objetivo é elucidar a força de interação e se o sistema intermolecular deve ser total, parcial ou não covalentemente ligado, sendo que este último engloba a maioria das interações intermoleculares o que leva a afirmar que a química é discutivelmente não ligada.

Downloads

Não há dados estatísticos.

Biografia do Autor

Boaz Galdino de Oliveira, Universidade Federal do Oeste da Bahia

Prof. Dr., Depto. de Química, UFOB, Barreiras, BA,

Referências

ABRAHAM, M. H.; GRELLIER, P. L.; PRIOR, D. V.; MORRIS, J. J.; TAYLOR*, P. J. Hydrogen bonding. Part 10. A scale of solute hydrogen-bond basicity using log K values for complexation in tetrachloromethane. Journal of the Chemical Society, Perkin Transactions 2, Cambridge, n. 4, p. 521-529, 1990. DOI: https://doi.org/10.1039/P29900000521. DOI: https://doi.org/10.1039/p29900000521

ADHIKARY, R.; ZIMMERMANN, J.; LIU, J.; FORREST, R. P.; JANICKI, T. D.; DAWSON, P. E.; CORCELLI, S. A.; ROMESBERG*, F. E. Evidence of an unusual N–H···N hydrogen bond in proteins. Journal of the American Chemical Society, Washington, v. 136, p. 13474-13477, 2014. DOI: https://doi.org/10.1021/ja503107h. DOI: https://doi.org/10.1021/ja503107h

ALKORTA, I.; ELGUERO, J.; FRONTERA, A. Not only hydrogen bonds: other noncovalent interactions. Crystals, Basel, v. 10, p. 180-209, 2020. DOI: https://doi.org/10.3390/cryst10030180. DOI: https://doi.org/10.3390/cryst10030180

ARUNAN, E.; DESIRAJU, G. R.; KLEIN, R. A.; SADLEJ, J.; SCHEINER, S.; ALKORTA, I.; CLARY, D. C.; CRABTREE, R. H.; DANNENBERG, J. J.; HOBZA, P.; KJAERGAARD, H. G.; LEGON, A. C.; MENNUCCI, B.; NESBITT, D. J. Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Applied Chemistry, Oxford, v. 83, p. 1637-1641, 2011. DOI: https://doi.org/10.1351/PAC-REC-10-01-02. DOI: https://doi.org/10.1351/PAC-REC-10-01-02

AYERS, P. W.; FRENKING, G. Richard Bader (1931–2012). Angewandte Chemie International Edition, Weinheim, v. 51, n. 19, p. 4521-4522, 2012. DOI: https://doi.org/10.1002/anie.201201794. DOI: https://doi.org/10.1002/anie.201201794

BADER, R. F. W. A quantum theory of molecular structure and its applications. Chemical Reviews, Washington, v. 91, n. 5, p. 893-928, 1991. DOI: https://doi.org/10.1021/cr00005a013. DOI: https://doi.org/10.1021/cr00005a013

BADER, R. F. W. Bond paths are not chemical bonds, Journal of Physical Chemistry A, Washington, v. 113, n. 38, p. 10391-10396, 2009. DOI: https://doi.org/10.1021/jp906341r. DOI: https://doi.org/10.1021/jp906341r

BADER, R. F. W. On the non-existence of parallel universes in chemistry. Foundation of Chemistry, [Dordrecht], v. 13, p. 11-37, 2011. DOI: https://doi.org/10.1007/s10698-011-9106-0. DOI: https://doi.org/10.1007/s10698-011-9106-0

BADER, R. F. W. The zero-flux surface and the topolo-gical and quantum definitions of an atom in a molecule. Theoretical Chemistry Accounts, Berlin, v. 105, p. 276-283, 2001. DOI: https://doi.org/10.1007/s002140000233. DOI: https://doi.org/10.1007/s002140000233

BADER, R. F. W.; HERNÁNDEZ-TRUJILLO, J.; CORTÉS-GUZMÁN, F. Chemical bonding: From Lewis to atoms in molecules. Journal of Computational Chemistry, New York, v. 28, p. 4-14, 2007. DOI: https://doi.org/10.1002/jcc.20528. DOI: https://doi.org/10.1002/jcc.20528

BADER, R. F. W.; NGUYEN-DANG, T. T. hspace2cmQuantum theory of atoms in molecules–Dalton revisited. Advances in Quantum Chemistry, [London], v. 14, p. 63-124, 1981. DOI: https://doi.org/10.1016/S0065-3276(08)60326-3. DOI: https://doi.org/10.1016/S0065-3276(08)60326-3

BAKAR, M. A.; SUGIUCHI, M.; IWASAKI, M.; SHICHIBU, Y.; KONISHI*, K. Hydrogen bonds to Au atoms in coordinated gold clusters. Nature communications, [London], v. 8, p. 1-7, 2017. DOI: https://doi.org/10.1038/s41467-017-00720-3. DOI: https://doi.org/10.1038/s41467-017-00720-3

BANKIEWICZ, B.; MATCZAK, P.; PALUSIAK, M. Electron density characteristics in Bond Critical Point (QTAIM) versus interaction energy components (sapt): the case of charge-assisted hydrogen bonding. The Journal of Physical Chemistry A, Washington, v. 116, p. 452-459, 2012. DOI: https://doi.org/10.1021/jp210940b. DOI: https://doi.org/10.1021/jp210940b

BAUZÁ, A.; ALKORTA, I.; ELGUERO, J.; MOOIBROEK*, T. J.; FRONTERA, A. Spodium Bonds: Noncovalent interactions involving group 12 elements. Angewandte Chemie International Edition, Weinheim, v. 59, p. 17482-17487, 2020. DOI: https://doi.org/10.1002/anie.202007814. DOI: https://doi.org/10.1002/anie.202007814

BAUZÁ, A.; FRONTERA, A. Aerogen bonding interaction: a new supramolecular force? Angewandte Chemie International Edition, Weinheim, v. 54, p. 7340-7343, 2015. DOI: https://doi.org/10.1002/anie.201502571. DOI: https://doi.org/10.1002/anie.201502571

BAUZÁ, A.; FRONTERA, A. Regium-π vs Cation-π Interactions in M2 and MCl (M = Cu, Ag and Au) Complexes with Small Aromatic Systems: An ab Initio Study. Inorganics, Basel, v. 6, p. 64-74, 2018. DOI: https://doi.org/10.3390/inorganics6030064. DOI: https://doi.org/10.3390/inorganics6030064

BAUZÁ, A.; SETH, K. S.; FRONTERA, A. Tetrel bonding interactions at work: Impact on tin and lead coordination compounds. Coordination Chemistry Reviews, Lausanne, v. 384, p. 107-125, 2019. DOI: https://doi.org/10.1016/j.ccr.2019.01.003. DOI: https://doi.org/10.1016/j.ccr.2019.01.003

BIEGLER-KÖNIG, F. W.; BADER, R. F. W.; TANG, T. -H. Calculation of the average properties of atoms in molecules. II. Journal of Computational Chemistry, New York, v. 3, p. 317-328, 1982. DOI: https://doi.org/10.1002/jcc.540030306. DOI: https://doi.org/10.1002/jcc.540030306

BISWAL, H. S.; SAHU, A. K.; FRONTERA, A.; BAUZÁ*, A. Spodium bonds in biological systems: expanding the role of Zn in protein structure and function. Journal of Chemical Information and Modeling. Washington, v. 61, p. 3945-3954, 2021. DOI: https://doi.org/10.1021/acs.jcim.1c00594. DOI: https://doi.org/10.1021/acs.jcim.1c00594

BROOKHART, M.; GREEN, M. L. H.; PARKIN, G. Agostic interactions in transition metal compounds. Proceedings of the National Academy of Sciences, Washington, v. 104, p. 6908-6914, 2007. DOI: https://doi.org/10.1073/pnas.0610747104. DOI: https://doi.org/10.1073/pnas.0610747104

CARVALHO, L. C.; BUENO, M. A.; OLIVEIRA, B. G. The interplay and strength of the π⋯H-F, C⋯H-F, F⋯H-F and F⋯H-C hydrogen bonds upon the formation of multimolecular complexes based on C2H2⋯HF and C2H4⋯HF small dimers. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Amsterdam, v. 213, p. 438-455, 2019. DOI: https://doi.org/10.1016/j.saa.2019.01.004. DOI: https://doi.org/10.1016/j.saa.2019.01.004

CAVALLO, G.; METRANGOLO, P.; MILANI, R.; PILATI, T.; PRIIMAGI, A.; RESNATI*, G.; TERRANEO, G. The halogen bond. Chemical Reviews, Washington, v. 116, p. 2478-2601, 2016. DOI: https://doi.org/10.1021/acs.chemrev.5b00484. DOI: https://doi.org/10.1021/acs.chemrev.5b00484

CHAŁASIŃSKI, G.; SZCZĘŚNIAK, M. M. State of the art and challenges of the ab initio theory of intermolecular interactions. Chemical Reviews, Washington, v. 100, p. 4227-4252, 2000. DOI: https://doi.org/10.1021/cr990048z. DOI: https://doi.org/10.1021/cr990048z

CHAVERRI, G. R. The periodic table of elements. Journal of Chemical Education, Tucson, v. 30, p. 632-633, 1953. DOI: https://doi.org/10.1021/ed030p632. DOI: https://doi.org/10.1021/ed030p632

CHEN, X.; BAI, Y.-K.; ZHAO, C.-Z.; SHEN, X.; ZHANG*, Q. Lithium bonds in lithium batteries. Angewandte Chemie International Edition, Weinheim, v. 59, p. 11192-11195, 2020. DOI: https://doi.org/10.1002/anie.201915623. DOI: https://doi.org/10.1002/anie.201915623

CHENG, T.; SHEN, D. X.; MENG, M.; MALLICK, S.; CAO, L.; PATMORE, N. J.; ZHANG, H. L.; ZOU, S. F.; CHEN, H. W.; QIN, Y.; WU, Y. Y.; LIU*, C. Y. Efficient electron transfer across hydrogen bond interfaces by proton-coupled and -uncoupled pathways. Nature Communications, [London], v. 10, p. 1-10, 2019. DOI: https://doi.org/10.1038/s41467-019-09392-7. DOI: https://doi.org/10.1038/s41467-019-09392-7

CHOPRA, D. Advances in understanding of chemical bonding: inputs from experimental and theoretical charge density analysis. Journal of Physical Chemistry A, Washington, v. 116, p. 9791-9801, 2012. DOI: https://doi.org/10.1021/jp306169f. DOI: https://doi.org/10.1021/jp306169f

CRABTREE, R. H. Dihydrogen complexation. Chemical Reviews, Washington, v. 116, p. 8750-8769, 2016. DOI: https://doi.org/10.1021/acs.chemrev.6b00037. DOI: https://doi.org/10.1021/acs.chemrev.6b00037

CRABTREE, R. H. Hydrogen bonding & dihydrogen bonding. Encyclopedia of Inorganic and Bioinorganic Chemistry, [Georgia]: Wiley, 2011. DOI: https://doi.org/10.1002/9781119951438.eibc0267. DOI: https://doi.org/10.1002/9781119951438.eibc0267

DEL BENE, J. E.; ALKORTA, I.; SANCHEZ-SANZ, G.; ELGUERO, J. Structures, Energies, Bonding, and NMR Properties of Pnicogen Complexes H2XP:NXH2 (X ═ H, CH3, NH2, OH, F, Cl). Journal of Physical Chemistry A, Washington, v. 115, p. 13724-13731, 2011. DOI: https://doi.org/10.1021/jp2094164. DOI: https://doi.org/10.1021/jp2094164

DESIRAJU, G. R. A bond by any other name. Angewandte Chemie International Edition, Weinheim, v. 50, p. 52-59, 2011. DOI: https://doi.org/10.1002/anie.201002960. DOI: https://doi.org/10.1002/anie.201002960

DIXIT, V. A.; RATHI, P. C.; BHARATAM, P. V. Intramolecular dihydrogen bond: A new perspective in Lewis acid catalyzed nucleophilic epoxide ring opening reaction. Journal of Molecular Structure, Amsterdam, v. 962, p. 97-100, 2010. DOI: https://doi.org/10.1016/j.theochem.2010.09.020. DOI: https://doi.org/10.1016/j.theochem.2010.09.020

DONG, W.; LI, Q.; SCHEINER, S. Comparative strengths of tetrel, pnicogen, chalcogen, and halogen bonds and contributing factors. Molecules, Basel, v. 23, p. 1681-1698, 2018. DOI: https://doi.org/10.3390/molecules23071681. DOI: https://doi.org/10.3390/molecules23071681

DUARTE, D. J. R.; ANGELINA, E. L.; PERUCHENA, N. M. Physical meaning of the QTAIM topological parameters in hydrogen bonding. Journal of Molecular Modeling, Berlin, v. 20, p. 2510-2519, 2014. DOI: https://doi.org/10.1007/s00894-014-2510-3. DOI: https://doi.org/10.1007/s00894-014-2510-3

EMAMIAN, S.; LU, T.; KRUSE, H.; EMAMIAN, H. Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory. Journal of Computational Chemistry, New York, v. 40, p. 2868-2881, 2019. DOI: https://doi.org/10.1002/jcc.26068. DOI: https://doi.org/10.1002/jcc.26068

ESRAFILI, M. D.; MOUSAVIAN, P. Strong tetrel bonds: theoretical aspects and experimental evidence, Molecules, Basel, v. 23, p. 2642-2661, 2018. DOI: https://doi.org/10.3390/molecules23102642. DOI: https://doi.org/10.3390/molecules23102642

ESRAFILI, M. D.; MOHAMMADIAN-SABET, F. Tuning tetrel bonds via cation–π interactions: an ab initio study on concerted interaction in M+–C6H5XH3–NCY complexes (M = Li, Na, K; X = Si, Ge; Y = H, F, OH). Molecular Physics, London, v. 114, p. 83-91, 2016. DOI: https://doi.org/10.1080/00268976.2015.1086498. DOI: https://doi.org/10.1080/00268976.2015.1086498

EVANS, R. C. The structure of atomic nuclei. Journal of Chemical Education, Tucson, v. 19, p. 549-550, 1942. DOI: https://doi.org/10.1021/ed019p549. DOI: https://doi.org/10.1021/ed019p549

FABBRIZZI, L. Beyond the molecule: intermolecular forces from gas liquefaction to X-H···π hydrogen bonds. ChemPlusChem, Weinheim, v. 87, p. e202100243-e202100265, 2022. DOI: https://doi.org/10.1002/cplu.202100243. DOI: https://doi.org/10.1002/cplu.202100243

FARRUGIA, L. J.; EVANS, C.; LENTZ, D.; ROEMER, M. The QTAIM approach to chemical bonding between transition metals and carbocyclic rings: a combined experimental and theoretical study of (η5-C5H5)Mn(CO)3, (η6-C6H6)Cr(CO)3, and (E)-{(η5-C5H4)CF═CF(η5-C5H4)}(η5-C5H5)2Fe2. Journal of the American Chemical Society, Washington, v. 131, p. 1251-1268, 2009. DOI: https://doi.org/10.1021/ja808303j. DOI: https://doi.org/10.1021/ja808303j

FILGUEIRAS, C. A. L. Duzentos anos da teoria atômica de Dalton. Química Nova na Escola, São Paulo, n. 20, p. 38-44, 2007. DOI: http://qnesc.sbq.org.br/online/qnesc20/v20a07.pdf.

FILGUEIRAS, C. A. L. Gilbert Lewis and the centennial of the electron pair theory of chemical bonding. Química Nova, São Paulo, v. 39, p. 1262-1268, 2016. DOI: http://dx.doi.org/10.21577/0100-4042.20160171. DOI: https://doi.org/10.21577/0100-4042.20160171

FRONTERA, A.; BAUZÁ, A. Biological halogen bonds in protein–ligand complexes: a combined QTAIM and NCIPlot study in four representative cases. Organic & Biomolecular Chemistry, Cambridge, v. 19, p. 6858-6864, 2021. DOI: https://doi.org/10.1039/D1OB01212F. DOI: https://doi.org/10.1039/D1OB01212F

FULTZ, B. The atomic origins of thermodynamics and kinetics. In: FULTZ, B. Phase Transitions in Materials, Cambridge: Cambridge University Press, 2014. p. 125-126. DOI: https://doi.org/10.1017/CBO9781107589865.008. DOI: https://doi.org/10.1017/CBO9781107589865.008

GARCIA, J.; PODESZWA, R.; SZALEWICZ, K. SAPT: codes for calculations of intermolecular interaction energies. Journal of Chemical Physics, New York, v. 152, p. 184109-184132, 2020. DOI: https://doi.org/10.1063/5.0005093. DOI: https://doi.org/10.1063/5.0005093

GILLESPIE, R. J. The valence-shell electron-pair repulsion (VSEPR) theory of directed valency. Journal of Chemical Education, Tucson, v. 40, p. 295-295, 1963. DOI: https://doi.org/10.1021/ed040p295. DOI: https://doi.org/10.1021/ed040p295

GILLESPIE, R. J.; POPELIER, P. L. A. Chemical bonding and molecular geometry: comments on a book review, a bond by any other name. Angewandte Chemie International Edition, Weinheim, v. 42, p. 3331-3334, 2003. DOI: https://doi.org/10.1002/anie.200320066. DOI: https://doi.org/10.1002/anie.200320066

GILLESPIE, R. J.; ROBINSON, E. A. Gilbert N. Lewis and the chemical bond: The electron pair and the octet rule from 1916 to the present day. Journal of Computational Chemistry, New York, v. 28, p. 87-97, 2007. DOI: https://doi.org/10.1002/jcc.20545. DOI: https://doi.org/10.1002/jcc.20545

GIMENO, M. C.; HERRERA, R .P. Hydrogen bonding and internal or external Lewis or Brønsted acid assisted (thio)urea catalysts. European Journal of Organic Chemistry, Weinheim, v. 2020, p. 1057-1068, 2020. DOI: https://doi.org/10.1002/ejoc.201901344. DOI: https://doi.org/10.1002/ejoc.201901344

GIUNTA, C. J.; MAINZ, V. V.; GIROLAMI, G. S. 150 Years of the Periodic Table; a commemorative symposium. [ S. l.]: Springer, 2021. DOI: https://doi.org/10.1007/978-3-030-67910-1

GLENDENING, E. D.; LANDIS, C. R.; WEINHOLD, F. Natural bond orbital methods. WIRES Computational Molecular Science, Hoboken, v. 2, p. 1-42, 2012. DOI: https://doi.org/10.1002/wcms.51. DOI: https://doi.org/10.1002/wcms.51

GODDARD III, W. A.; DUNNING JUNIOR, T. H.; HUNT, W. J.; HAY, P. J. Generalized valence bond description of bonding in low-lying states of molecules. Accounts of Chemical Research, Washington, v. 6, p. 368-376, 1973. DOI: https://doi.org/10.1021/ar50071a002. DOI: https://doi.org/10.1021/ar50071a002

GOYMER, P. 100 years of the hydrogen bond. Nature Chemistry, London, v. 4, p. 863-864, 2012. DOI: https://doi.org/10.1038/nchem.1482. DOI: https://doi.org/10.1038/nchem.1482

GRABARZ, A.; MICHALCZYK, M.; ZIER-KIEWICZ*, W.; SCHEINER*, S. Anion–anion interactions in aerogen-bonded complexes. influence of solvent environment. Molecules, Basel, v. 26, p. 2116-2129, 2021. DOI: https://doi.org/10.3390/molecules26082116. DOI: https://doi.org/10.3390/molecules26082116

GRABOWSKI, S. J. Boron and other triel Lewis acid centers: from hypovalency to hypervalency. ChemPhysChem, Weinheim, v. 15, p. 2985-2993, 2014. DOI: https://doi.org/10.1002/cphc.201402344. DOI: https://doi.org/10.1002/cphc.201402344

GRABOWSKI, S. J. [FHF]-—The strongest hydrogen bond under the influence of external interactions. Crystals, Basel, v. 6, p. 3-19; 2016. DOI: https://doi.org/10.3390/cryst6010003. DOI: https://doi.org/10.3390/cryst6010003

GRABOWSKI, S. J. Hydrogen bond – definitions, criteria of existence and various types. In: GRABOWSKI, S. J. Understanding hydrogen bonds: theoretical and experimental views. Cambridge: Royal Society of Chemistry, 2020. p. 1-40, 2020a. DOI: https://doi.org/10.1039/9781839160400-00001. DOI: https://doi.org/10.1039/9781839160400-00001

GRABOWSKI, S. J. Hydrogen Bond and other Lewis acid–Lewis base interactions as preliminary stages of chemical reactions. Molecules, Basel, v. 25, p. 4668-4676, 2020b. DOI: https://doi.org/10.3390/molecules25204668. DOI: https://doi.org/10.3390/molecules25204668

GRABOWSKI, S. J. Triel bond and coordination of triel centres: comparison with hydrogen bond interaction. Coordination Chemistry Reviews, Lausanne, v. 407, p. 213171-213190, 2020c. DOI: https://doi.org/10.1016/j.ccr.2019.213171. DOI: https://doi.org/10.1016/j.ccr.2019.213171

GRABOWSKI, S. J. What is the covalency of hydrogen bonding?. Chemical Reviews, Washington, v. 111, p. 2597-2625, 2011. DOI: https://doi.org/10.1021/cr800346f. DOI: https://doi.org/10.1021/cr800346f

GRABOWSKI, S. J.; LIPKOWSKI, P. Characteristics of X-H···π Interactions: Ab Initio and QTAIM Studies. Journal of Physical Chemistry A, Washington, v. 115, p. 4765-4773, 2011. DOI: https://doi.org/10.1021/jp2005327. DOI: https://doi.org/10.1021/jp2005327

GRABOWSKI, S. J.; SOKALSKIC, W. A.; LESZCZYNSKI, J. Hydride bonding – Ab initio studies of BeH2∙∙∙Li+, BeH2∙∙∙Na+ and BeH2∙∙∙Mg2+ model systems. Chemical Physics Letters, Amsterdam, v. 422, p. 334-339, 2006. DOI: https://doi.org/10.1016/j.cplett.2006.01.120. DOI: https://doi.org/10.1016/j.cplett.2006.01.120

HABERHAUER, G.; GLEITER, R. The nature of strong chalcogen bonds involving chalcogen-containing heterocycles. Angewandte Chemie International Edition, Weinheim, v. 59, p. 21236-21243, 2020. DOI: https://doi.org/10.1002/anie.202010309. DOI: https://doi.org/10.1002/anie.202010309

HAPKA, M.; MODRZEJEWSKI, M.; CHAŁA-SIŃSKI, G.; SZCZĘŚNIAK*, M. M. Assessment of SAPT(DFT) with meta-GGA functionals. Journal of Molecular Modeling, Berlin, v. 26, p. 102-111, 2020. DOI: https://doi.org/10.1007/s00894-020-4340-9. DOI: https://doi.org/10.1007/s00894-020-4340-9

HEINDEL, J. P.; KNODEL, E. S.; SCHOFIELD, D. P. Origin of many-body vibrational frequency shifts in water clusters. Journal of Physical Chemistry A, Washington, v. 122, p. 6724-6735, 2018. DOI: https://doi.org/10.1021/acs.jpca.8b04380. DOI: https://doi.org/10.1021/acs.jpca.8b04380

HELLIWELL, J. R. Concerning the measurement of charge density X-ray diffraction data at synchrotron sources: challenges and opportunities. Crystallography Reviews, New York, v. 23, p. 238-251, 2017. DOI: https://doi.org/10.1080/0889311X.2017.1295038. DOI: https://doi.org/10.1080/0889311X.2017.1295038

HILL, J. G. The halogen bond in thiiraneClF: an example of a Mulliken inner complex. Physical Chemistry Chemical Physics, Cambridge, v. 16, p. 19137-19140, 2014. DOI: https://doi.org/10.1039/C4CP03412K. DOI: https://doi.org/10.1039/C4CP03412K

HIRSHFELD, F. L. Bonded-atom fragments for describing molecular charge densities. Theoretica Chimica Acta, Berlin, v. 44, p. 129-138, 1977a. DOI: https://doi.org/10.1007/BF00549096. DOI: https://doi.org/10.1007/BF00549096

HIRSHFELD, F. L. XVII. Spatial partitioning of charge density. Israel Journal of Chemistry, Jerusalem, v. 16, p. 198-201, 1977b. DOI: https://doi.org/10.1002/ijch.197700033. DOI: https://doi.org/10.1002/ijch.197700033

HOJA, J.; SAX, A. F.; SZALEWICZ, K. Is electrostatics sufficient to describe hydrogen-bonding interactions? Chemistry an European Journal, Tucker, v. 20, p. 2291-2230, 2014. DOI: https://doi.org/10.1002/chem.201303528. DOI: https://doi.org/10.1002/chem.201303528

HOLSTEIN, T. Studies of polaron motion: part I. the molecular-crystal model. Annals of Physics, New York, v. 8, p. 325-342, 1959. DOI: https://doi.org/10.1016/0003-4916(59)90002-8. DOI: https://doi.org/10.1016/0003-4916(59)90002-8

HONG; L.; CHEN, Y.-Q. Nature and structural property of dihydrogen-bond complexes of BeH2 with hydrogen halides. Acta Physico-Chimica Sinica, Beijing, v. 23, p. 1974-1978, 2007. DOI: https://doi.org/10.3866/PKU.WHXB20071227. DOI: https://doi.org/10.3866/PKU.WHXB20071227

HUNTER, K. H.; RODRIGUEZ, J.-M. G. BECKER, M. N. A review of research on the teaching and learning of chemical bonding. Journal of Chemical Education, Tucson, v. 99, p. 2451-2464, 2022. DOI: https://doi.org/10.1021/acs.jchemed.2c00034. DOI: https://doi.org/10.1021/acs.jchemed.2c00034

IBRAHIM, M. A. A.; MOUSSA, N. A. M. Unconventional type III halogen···halogen interactions: a quantum mechanical elucidation of σ-hole···σ-hole and di-σ-hole interactions. ACS Omega, Washington, v. 5, p. 21824-21835, 2020. DOI: https://doi.org/10.1021/acsomega.0c02887. DOI: https://doi.org/10.1021/acsomega.0c02887

IRIBARREN, I.; SÁNCHEZ-SANZ, G.; ALKORTA, I.; ELGUERO, J.; TRUJILLO*, C. Evaluation of electron density shifts in noncovalent interactions. Journal of Physical Chemistry A, Washington, v. 125, p. 4741-4749, 2021. DOI: https://doi.org/10.1021/acs.jpca.1c00830. DOI: https://doi.org/10.1021/acs.jpca.1c00830

IUPAC. Compendium of Chemical Terminology. 2nd ed. Oxford: Blackwell Scientific Publications, 2019. Available from: https://goldbook.iupac.org/terms/view/AT06984. Access in: Sept. 2022.

JABŁOŃSKI, M. A critical overview of current theoretical methods of estimating the energy of intramolecular interactions, Molecules, Basel, v. 25, p. 5512-5548, 2020. DOI: https://doi.org/10.3390/molecules25235512. DOI: https://doi.org/10.3390/molecules25235512

JABŁOŃSKI, M. Does the presence of a bond path really mean interatomic stabilization? The case of the Ng@Superphane (Ng = He, Ne, Ar, and Kr) endohedral complexes. Symmetry, Basel, v. 13, p. 2241-2256, 2021. DOI: https://doi.org/10.3390/sym13122241. DOI: https://doi.org/10.3390/sym13122241

JABŁOŃSKI, M.; PALUSIAK, M. Nature of a hydride–halogen bond: a SAPT-, QTAIM, and NBO-based study, Journal of Physical Chemistry A, Washington, v. 116, p. 2322-2332, 2012. DOI: https://doi.org/10.1021/jp211606t. DOI: https://doi.org/10.1021/jp211606t

JALILOV, A.; DEATS, S.; ALBUKHARI, M.; ZELLER, M.; ROSOKHA*, S. V. Intermolecular interactions between halogen-substituted p-benzoquinones and halide anions: anion-π complexes versus halogen bonding. ChemPhysChem, Weinheim, v. 85, p. 441-449, 2020. DOI: https://doi.org/10.1002/cplu.202000012. DOI: https://doi.org/10.1002/cplu.202000012

JEZIORSKI, B., MOSZYNSKI, R., SZALEWICZ, K. Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chemical Reviews, Washington, v. 94, p. 1887-1930, 1994. DOI: https://doi.org/10.1021/cr00031a008. DOI: https://doi.org/10.1021/cr00031a008

JIMÉNEZ-GRÁVALOS, F.; SUÁREZ, D. A quantum chemical topology picture of intermolecular electrostatic interactions and charge penetration energy. Journal of Chemical Theory and Computation, Washington, v. 17, p. 4981-4995, 2021. DOI: https://doi.org/10.1021/acs.jctc.1c00263. DOI: https://doi.org/10.1021/acs.jctc.1c00263

KAMAL, D.; CHANDRASEKARAN, A.; BATRA, R.; RAMPRASAD*, R. A charge density prediction model for hydrocarbons using deep neural networks. Machine Learning: Science and Technology, [Bristol], v. 1, p. 025003-025015, 2020. DOI: https://doi.org/10.1088/2632-2153/ab5929. DOI: https://doi.org/10.1088/2632-2153/ab5929

KARACHI, S. S.; ESKANDARI, K. Boron triel bonds: a quantum chemical topology perspective. ChemistrySelect, Weinheim, v. 6, p. 12431-12439, 2021. DOI: https://doi.org/10.1002/slct.202103002. DOI: https://doi.org/10.1002/slct.202103002

KELLETT, C. W.; KENNEPOHL, P.; BERLINGUETTE, C. P. π covalency in the halogen bond. Nature Communications, [London], v. 11, p. 1-8, 2020. DOI: https://doi.org/10.1038/s41467-020-17122-7. DOI: https://doi.org/10.1038/s41467-020-17122-7

KOJIĆ-PRODIĆ, B.; MOLČANOV, K. The nature of hydrogen bond: new insights into old theories. Acta Chimica Slovenica, Ljubljana, v. 55, p. 692-708, 2008.

KURNIAWAN, O.; KOH, L. L. A.; CHENG, J. Z. M.; PEE, M. Helping students connect interdisciplinary concepts and skills in physical chemistry and introductory computing: solving schrödinger’s equation for the hydrogen atom. Journal of Chemical Education, Tucson, v. 96, p. 2202-2207, 2019. DOI: https://doi.org/10.1021/acs.jchemed.9b00068. DOI: https://doi.org/10.1021/acs.jchemed.9b00068

LEWIS, G. N. The atom and the molecule. Journal of the American Chemical Society, Washington, v. 38, p. 762-785, 1916. DOI: https://doi.org/10.1021/ja02261a002. DOI: https://doi.org/10.1021/ja02261a002

LI, Q.; YUAN, H.; JING, B.; LIU, Z.; LI, W.; CHENG, J.; GONG, B.; SUN, J. Theoretical study of halogen–hydride halogen bonds F3CL···HM (L = Cl, Br; M = Li, BeH, MgH) complexes. Molecular Physics, London, v. 108, p. 611-617, 2010. DOI: https://doi.org/10.1080/00268971003630703. DOI: https://doi.org/10.1080/00268971003630703

LIU, Y.; PENG, B.; WANG, X.; XIE, Y.; SCHAEFER III*, H.F. The nature of lithium bonding in C2H2Li2, C6Li6, and lithium halide dimers. Organometallics, Washington, v. 38, p. 4708-4716, 2019. DOI: https://doi.org/10.1021/acs.organomet.9b00683. DOI: https://doi.org/10.1021/acs.organomet.9b00683

LU, Y.-X.; ZOU, J.-W.; WANG, Y.-H.; YU. Q.-S. Substituent effects on noncovalent halogen/π interactions: Theoretical study. International Journal of Quantum Chemistry, New York, v. 107, p. 1479-1486, 2007. DOI: https://doi.org/10.1002/qua.21279. DOI: https://doi.org/10.1002/qua.21279

MACCHI, P. Modern charge density studies: the entanglement of experiment and theory. Crystallography Reviews, New York, v. 19, p. 58-101, 2013. DOI: https://doi.org/10.1080/0889311X.2013.785538. DOI: https://doi.org/10.1080/0889311X.2013.785538

MAGNUSSEN, O. M.; GRObeta, A.; Toward an atomic-scale understanding of electrochemical interface structure and dynamics. Journal of the American Chemical Society, Washington, v. 141, p. 4777-4790, 2019. DOI: https://doi.org/10.1021/jacs.8b13188. DOI: https://doi.org/10.1021/jacs.8b13188

MAHMUDOV, K. T.; GURBANOV, A. V.; ALIYEV, V. A.; RESNATI, G.; POMBEIRO, A. J. L. Pnictogen bonding in coordination chemistry. Coordination Chemistry Reviews, Lausanne, v. 418, p. 213381-213394, 2020. DOI: https://doi.org/10.1016/j.ccr.2020.213381. DOI: https://doi.org/10.1016/j.ccr.2020.213381

MANSOOR, N. Foundations of modern atomic theory: Thomson, Rutherford, and Bohr. In: MANSOOR, N. Critical Appraisal of Physical Science as a Human Enterprise. Dordrecht: Springer Dordrecht, 2009. v. 36, p. 75-95. DOI: https://doi.org/10.1007/978-1-4020-9626-6_6. DOI: https://doi.org/10.1007/978-1-4020-9626-6_6

MATTA, C. F. Special issue: Philosophical aspects and implications of the quantum theory of atoms in molecules (QTAIM). Foundations of Chemistry, [Dordrecht], v. 15, p. 245-251, 2013. DOI: https://doi.org/10.1007/s10698-013-9194-0. DOI: https://doi.org/10.1007/s10698-013-9194-0

MÁTYUS, E. Pre-Born–Oppenheimer molecular structure theory. Molecular Physics, London, v. 117, p. 590-609, 2019. DOI: https://doi.org/10.1080/00268976.2018.1530461. DOI: https://doi.org/10.1080/00268976.2018.1530461

MEOT-NER, M(MAUTNER). The ionic hydrogen bond. Chemical Reviews, Washington, v. 105, p. 213-284, 2005. DOI: https://doi.org/10.1021/cr9411785. DOI: https://doi.org/10.1021/cr9411785

MONDAL, A.; DATTA, S. Quantum mechanical electronic structure calculation reveals orientation dependence of hydrogen bond energy in proteins. Proteins, New York, v. 85, p. 1046-1055, 2017. DOI: https://doi.org/10.1002/prot.25271. DOI: https://doi.org/10.1002/prot.25271

MURPHY, L. R.; MEEK, T. L.; ALLRED, A. L.; ALLEN*, L. C. Evaluation and test of Pauling's electronegativity scale. Journal of Physical Chemistry A, Washington, v. 104, p. 5867-5871, 2000. DOI: https://doi.org/10.1021/jp000288e. DOI: https://doi.org/10.1021/jp000288e

MURRAY, J. S.; LANE, P.; CLARK, T.; POLITZER, P. σ-hole bonding: molecules containing group VI atoms. Journal of Molecular Modeling, Berlin, v. 13, p. 1033-1038, 2007. DOI: https://doi.org/10.1007/s00894-007-0225-4. DOI: https://doi.org/10.1007/s00894-007-0225-4

NÄTHER, C.; JESS, I.; JONES*, P. G.; TAOUSS, C.; TESCHMIT, N. Structural, thermodynamic, and kinetic aspects of the polymorphism of trimethylthiourea: the influence of kinetics on the transformations between polymorphs. Crystal Growth & Design, Washington,, v. 13, p. 1676-1684, 2013. DOI: https://doi.org/10.1021/cg400005d. DOI: https://doi.org/10.1021/cg400005d

NZIKO, V. P. N.; SCHEINER, S. Comparison of π-hole tetrel bonding with σ-hole halogen bonds in complexes of XCN (X = F, Cl, Br, I) and NH_3. Physical Chemistry Chemical Physics, Cambridge, v. 18, p. 3581-3590, 2016. DOI: https://doi.org/10.1039/C5CP07545A. DOI: https://doi.org/10.1039/C5CP07545A

OLIVEIRA, B. G. Teoria quântica de átomos em moléculas. Revista Brasileira de Ensino de Física, São Paulo, v. 42, p. e20190061-e20190069, 2020. DOI: https://doi.org/10.1590/1806-9126-RBEF-2019-0061. DOI: https://doi.org/10.1590/1806-9126-rbef-2019-0061

OLIVEIRA, B. G. The interaction strength, frequency-shifts and covalence of the C_2H_4O···HOCl and C_2H_5N···HOCl heterocyclic complexes. Orbital: The Electronic Journal Of Chemistry, Campo Grande, v. 9, p. 95-99, 2017. DOI: http://dx.doi.org/10.17807/orbital.v9i2.853. DOI: https://doi.org/10.17807/orbital.v9i2.853

OLIVEIRA, B. G. Theoretical estimation of pnicogen bonds and hydrogen bonds in small heterocyclic complexes: Red-shifts and blue-shifts ruled by polarization effects. Chemical Physics, New York, v. 443, p. 67-75, 2014. DOI: http://dx.doi.org/10.1016/j.chemphys.2014.09.001. DOI: https://doi.org/10.1016/j.chemphys.2014.09.001

OLIVEIRA, B. G.; ARAÚJO, R. C. M. U. SAPT: hydrogen bond or van der Waals interaction? Química Nova, São Paulo, v. 35, p. 2002-2012, 2012. DOI: https://doi.org/10.1590/S0100-40422012001000021. DOI: https://doi.org/10.1590/S0100-40422012001000021

PADASH, R.; ESFAHANI, M. R.; RAD, A. S. The computational quantum mechanical study of sulfamide drug adsorption onto X_12Y_12 fullerene-like nanocages: detailed DFT and QTAIM investigations. Journal of Biomolecular Structure and Dynamics, Guilderland, v. 39, p. 5427-5437, 2021. DOI: https://doi.org/10.1080/07391102.2020.1792991. DOI: https://doi.org/10.1080/07391102.2020.1792991

PASCOE, D. J.; LING, K. B.; COCKROFT, S. L. The origin of chalcogen-bonding interactions. Journal of the American Chemical Society, Washington, v. 139, p. 15160-15167, 2017. DOI: https://doi.org/10.1021/jacs.7b08511. DOI: https://doi.org/10.1021/jacs.7b08511

PATKOWSKI, K. Recent developments in symmetry-adapted perturbation theory, WIRES Computational Molecular Science, Hoboken, v. 10, p. e1452-2e1498, 2020. DOI: https://doi.org/10.1002/wcms.1452. DOI: https://doi.org/10.1002/wcms.1452

PHIPPS, M. J. S.; FOX, T.; TAUTERMANN, C. S.; SKYLARIS*, C. -K. Energy decomposition analysis approaches and their evaluation on prototypical protein–drug interaction patterns. Chemical Society Reviews, Letchworth, v. 44, p. 3177-3211, 2015. DOI: https://doi.org/10.1039/C4CS00375F. DOI: https://doi.org/10.1039/C4CS00375F

PIETSCH, U.; HANSEN, N. K. A critical review of the experimental valence charge density of GaAs, Acta crystallographica B, Oxford, v. 52, p. 596-604, 1996. DOI: https://doi.org/10.1107/S0108768196003576. DOI: https://doi.org/10.1107/S0108768196003576

PIMENTEL, G. C.; MCCLELLAN, A. L. Hydrogen bonding. Annual Review of Physical Chemistry, Palo Alto, v. 22, p. 347-385, 1971. DOI: https://doi.org/10.1146/annurev.pc.22.100171.002023. DOI: https://doi.org/10.1146/annurev.pc.22.100171.002023

PIÑA, M. N.; FRONTERA, A.; BAUZÁ, A. Regium-π bonds are involved in protein-gold binding. Journal of Physical Chemistry Letters, Washington, v. 11, p. 8259-8263, 2020. DOI: https://doi.org/10.1021/acs.jpclett.0c02295. DOI: https://doi.org/10.1021/acs.jpclett.0c02295

PISANO, L.; FARRIOL, M.; ASENSIO, X.; GALLARDO, I.; GONZÁLEZ-LAFONT, A.; LLUCH, J. M.; MARQUET*, J. Thermodynamics, Kinetics, and dynamics of the two alternative aniomesolytic fragmentations of C-O bonds: an electrochemical and theoretical study. Journal of the American Chemical Society, Washington, v. 124, p. 4708-4715, 2002. DOI: https://doi.org/10.1021/ja012444g. DOI: https://doi.org/10.1021/ja012444g

PRASANNAA, M. D.; ROW, T. N. G. C-halogen···π interactions and their influence on molecular conformation and crystal packing: a database study. Crystal Engineering, [ s. l.], v. 3, p. 135-154, 2000. DOI: https://doi.org/10.1016/S1463-0184(00)00035-6. DOI: https://doi.org/10.1016/S1463-0184(00)00035-6

RACKERS, J. A.; PONDER, J. W. Classical Pauli repulsion: An anisotropic, atomic multipole model. Journal of Chemical Physics, Melville, v. 150, p. 084104-084127, 2019. DOI: https://doi.org/10.1063/1.5081060. DOI: https://doi.org/10.1063/1.5081060

RAHAMAN, O.; DOREN, D.J.; DI TORO, D. M. Quantum mechanical estimation of Abraham hydrogen bond parameters using 1:1 donor–acceptor complexes. Journal of Physical Organic Chemistry, Chichester, v. 27, p. 783-793, 2014. DOI: https://doi.org/10.1002/poc.3337. DOI: https://doi.org/10.1002/poc.3337

REGO, D.; OLIVEIRA, B. G. A new vision of the DNA triple-helix: structural, spectroscopic and electronic parameters for hydrogen bonding for Watson-Crick and Hoogsteen pairing. Semina: Ciências Exatas e Tecnológicas, Londrina, v. 41, p. 59-70, 2020. DOI: https://doi.org/10.5433/1679-0375.2020v41n1p59. DOI: https://doi.org/10.5433/1679-0375.2020v41n1p59

RILEY, K. E.; HOBZA, P. Investigations into the nature of halogen bonding including symmetry adapted perturbation theory analyses. Journal of Chemical Theory and Computation,Washington, v. 4, p. 232-242, 2008. DOI: https://doi.org/10.1021/ct700216w. DOI: https://doi.org/10.1021/ct700216w

RITTER, S. K. The art of the chemical bond. ACS Central Science, Washington, v. 2, p. 769-772, 2016. DOI: https://doi.org/10.1021/acscentsci.6b00337. DOI: https://doi.org/10.1021/acscentsci.6b00337

RODRÍGUEZ, J. I.; URIBE, E. A.; BALTAZAR-MÉNDEZ, M. I.; AUTSCHBACH, J.; CASTILLO-ALVARADO, F. L.; GUTIÉRREZ-GONZÁLEZ, I. Size evolution relativistic DFT-QTAIM study on the gold cluster complexes Au_4-S-C_nH_2n-S'-Au_4' (n = 2-5). Chemical Physics Letters, Amsterdam, v. 660, p. 287-294, 2016. DOI: https://doi.org/10.1016/j.cplett.2016.08.038. DOI: https://doi.org/10.1016/j.cplett.2016.08.038

ROJAS, S.; PARRAVICINI, O.; VETTORAZZI, M.; TOSSO, R.; GARRO, A.; GUTIÉRREZ, L.; ANDÚJAR, S.; ENRIZ*, R. Combined MD/QTAIM techniques to evaluate ligand-receptor interactions. Scope and limitations. European Journal of Medicinal Chemistry, Paris, v. 208, p. 112792-112807, 2020. DOI: https://doi.org/10.1016/j.ejmech.2020.112792. DOI: https://doi.org/10.1016/j.ejmech.2020.112792

ROOTHAAN, C. C. J. New developments in molecular orbital theory. Reviews of Modern Physics, New York, v. 23, p. 69-89, 1951. DOI: https://doi.org/10.1103/RevModPhys.23.69. DOI: https://doi.org/10.1103/RevModPhys.23.69

RZEPA, R. S. The importance of being bonded. Nature Chemistry, London, v. 1, p. 510-512, 2009. DOI: https://doi.org/10.1038/nchem.373. DOI: https://doi.org/10.1038/nchem.373

SAGGU, M.; LEVINSON, N. M.; BOXER, S. G. Experimental quantification of electrostatics in X–H···π hydrogen bonds. Journal of the American Chemical Society, Washington, v. 134, p. 18986-18997, 2012. DOI: https://doi.org/10.1021/ja305575t. DOI: https://doi.org/10.1021/ja305575t

SÁNCHEZ-SANZ, G.; TRUJILLO, C.; ALKORTA, I.; ELGUERO, J. Understanding regium bonds and their competition with hydrogen bonds in Au_2:HX complexes. ChemPhysChem, Weinheim, v. 17, p. 1572-1580, 2019. DOI: https://doi.org/10.1002/cphc.201900354. DOI: https://doi.org/10.1002/cphc.201900354

SANNIGRAHI, A. B.; KAR, T.; NIYOGI, B. G.; HOBZA, P.; SCHLEYER*, P. V. R. The lithium bond reexamined. Chemical Reviews, Washington,, v. 90, p. 1061-1076, 1990. DOI: https://doi.org/10.1021/cr00104a007. DOI: https://doi.org/10.1021/cr00104a007

SANTOS, L. A.; HAMLIN, T. A.; RAMALHO, T. C.; BICKELHAUPT*, F. M. The pnictogen bond: a quantitative molecular orbital Picture. Physical Chemistry Chemical Physics, Cambridge, v. 23, p. 13842-13852, 2021.DOI: https://doi.org/10.1039/D1CP01571K. DOI: https://doi.org/10.1039/D1CP01571K

SCERRI, E. R. What is an element? What is the periodic table? And what does quantum mechanics contribute to the question? Foundation of Chemistry, [Dordrecht], v. 14, p. 69-81, 2012. DOI: https://10.1007/s10698-011-9124-y. DOI: https://doi.org/10.1007/s10698-011-9124-y

SCHEINER, S. A new noncovalent force: Comparison of P···N interaction with hydrogen and halogen bonds. Journal of Chemical Physics, Melville, v. 134, p. 094315-094324, 2011. DOI: https://doi.org/10.1063/1.3562209. DOI: https://doi.org/10.1063/1.3562209

SCHEINER, S. Origins and properties of the tetrel bond. Physical Chemistry Chemical Physics, Cambridge, v. 23, p. 5702-5717, 2021. DOI: https://doi.org/10.1039/D1CP00242B. DOI: https://doi.org/10.1039/D1CP00242B

SCHEINER, S. Tetrel bonds. Molecules, Basel, 2019.

SCHERER, W.; MCGRADY, G. S. Agostic interactions in d0 metal alkyl complexes. Angewandte Chemie International Edition, Weinheim, v. 43, p. 1782-1806, 2004. DOI: https://doi.org/10.1002/anie.200200548. DOI: https://doi.org/10.1002/anie.200200548

SCHMIDBAUR, H.; RAUBENHEIMER, H. G.; DOBRZAŃSKA, L. The gold–hydrogen bond, Au–H, and the hydrogen bond to gold, Au···H–X. Chemical Society Reviews, Letchworth, v. 43, p. 345-380, 2014. DOI: https://doi.org/10.1039/C3CS60251F. DOI: https://doi.org/10.1039/C3CS60251F

SCHNEIDER, H.-J. Noncovalent interactions: a brief account of a long history. Journal of Physical Organic Chemistry, Chichester, v. 35, p. e4340-e4350, 2022. DOI: https://doi.org/10.1002/poc.4340. DOI: https://doi.org/10.1002/poc.4340

SEABORG, G. T. The research style of Gilbert N. Lewis acids and bases. Journal of Chemical Education, Tucson, v. 61, p. 93-100, 1984. DOI: https://doi.org/10.1021/ed061p93. DOI: https://doi.org/10.1021/ed061p93

SHAH, M. B.; LIU, J.; ZHANG, Q.; STOUT, C. D.; HALPERT, J. R. Halogen-π interactions in the cytochrome P450 active site: structural insights into human CYP2B6 substrate selectivity. ACS Chemical Biology, Washington, v. 12, p. 1204-1210, 2017. DOI: https://doi.org/10.1021/acschembio.7b00056. DOI: https://doi.org/10.1021/acschembio.7b00056

SHISHKINA, S. V.; DYAKONENKO, V. V.; SHISHKIN, O. V.; SEMYNOZHENKO, V. P.; BOGASHCHENKO, T. Y.; LYAPUNOV, A. Y.; KIRICHENKO, T. I. Halogen···π interactions in the complexes of fluorenonophane with haloforms. Structural Chemistry, Deerfield Beach, v. 33, p. 257-266, 2022. DOI: https://doi.org/10.1007/s11224-021-01839-2. DOI: https://doi.org/10.1007/s11224-021-01839-2

STENLID, J. H.; JOHANSSON, A. J.; BRINCK, T. σ-Holes and σ-lumps direct the Lewis basic and acidic interactions of noble metal nanoparticles: introducing regium bonds. Physical Chemistry Chemical Physics, Cambridge, v. 20, p. 2676-2692, 2018. DOI: https://doi.org/10.1039/C7CP06259A. DOI: https://doi.org/10.1039/C7CP06259A

ŠTĚPÁNEK, P.; CORIANI, S.; SUNDHOLM, D.; OVCHINNIKOV, V. A.; VAARA, J. Relation between molecular electronic structure and nuclear spin-induced circular dichroism. Scientific Reports, [ s. l.], v. 7, p. 1-11, 2017. DOI: https://doi.org/10.1038/srep46617. DOI: https://doi.org/10.1038/srep46617

SUMA, N.; ARULDHAS*, D.; JOE, I. H.; ANUF, A. R.; ARUN SASI, B. S. Spectroscopic, quantum chemical, QTAIM analysis, molecular dynamics simulation, docking studies and solvent effect of pyridin-2-yl oxyacetic acid herbicide and its derivatives. Journal of Molecular Structure, Amsterdam, v. 1206, p. 127677-127695, 2020. DOI: https://doi.org/10.1016/j.molstruc.2019.127677. DOI: https://doi.org/10.1016/j.molstruc.2019.127677

SYZGANTSEVA, O. A.; TOGNETTI, V.; JOUBERT, L. On the physical nature of halogen bonds: a QTAIM study. Journal of Physical Chemistry A, Washington, v. 113, p. 8969-8990, 2013. DOI: https://doi.org/10.1021/jp4059774. DOI: https://doi.org/10.1021/jp4059774

SZALEWICZ, K. Symmetry-adapted perturbation theory of intermolecular forces. WIRES Computational Molecular Science, Hoboken, v. 2, p. 254-272, 2012. DOI: https://doi.org/10.1002/wcms.86. DOI: https://doi.org/10.1002/wcms.86

TANTARDINI, C.; OGANOV, A. Thermochemical electronegativities of the elements. Nature Communications, [London], v. 12, p. 1-9, 2021. DOI: https://doi.org/10.1038/s41467-021-22429-0. DOI: https://doi.org/10.1038/s41467-021-22429-0

TRUJILLO, C.; SÁNCHEZ-SANZ*, G. ALKORTA, I.; ELGUERO, J. Halogen, Chalcogen and Pnictogen Interactions in (XNO2)2 Homodimers (X = F, Cl, Br, I). New Journal of Chemistry, Cambridge, v. 39, p. 6791-6802, 2015. DOI: https://doi.org/10.1039/C5NJ00600G. DOI: https://doi.org/10.1039/C5NJ00600G

TURUNEN, L.; ERDÉLYI, M. Halogen bonds of halonium ions. Chemical Society Reviews, Letchworth, v. 49, p. 2688-2700, 2020. DOI: https://doi.org/10.1039/D0CS00034E. DOI: https://doi.org/10.1039/D0CS00034E

UMEYAMA, H.; MOROKUMA, K. The origin of hydrogen bonding. An energy decomposition study. Journal of the American Chemical Society, Washington, v. 99, p. 1316-1332, 1977. DOI: https://doi.org/10.1021/ja00447a007. DOI: https://doi.org/10.1021/ja00447a007

URNER, L. M.; LEE, G. Y; TREACY, J. W.; TURLIK, A.; KHAN, S. I.; HOUK, K. N.; JUNG*, M. E. Intramolecular N-H···F hydrogen bonding interaction in a series of 4-anilino-5-fluoroquinazolines: experimental and theoretical characterization of electronic and conformational effects. Chemistry an European Journal, Tucker, v. 28, p. e202103135-e202103219, 2022. DOI: https://doi.org/10.1002/chem.202103135. DOI: https://doi.org/10.1002/chem.202103135

VAN DER LUBBE, S. C. C.; GUERRA, C. F. The nature of hydrogen bonds: a delineation of the role of different energy components on hydrogen bond strengths and lengths. Chemistry an European Journal, Tucker, v. 14, p. 2760-2769, 2019. DOI: https://doi.org/10.1002/asia.201900717. DOI: https://doi.org/10.1002/asia.201900717

VARADWAJ, A.; VARADWAJ, P. R.; MARQUES, H. M.; YAMASHITA, K. The Pnictogen bond, together with other non-covalent interactions, in the rational design of one-, two- and three-dimensional organic-inorganic hybrid metal halide perovskite semiconducting materials, and beyond. International Journal of Molecular Sciences, Basel, v. 23, p. 8816-8876, 2022a. DOI: https://doi.org/10.3390/ijms23158816. DOI: https://doi.org/10.3390/ijms23158816

VARADWAJ, A.; VARADWAJ, P.R.; MARQUES, H.M.; YAMASHITA, K. The pnictogen bond: the covalently bound arsenic atom in molecular entities in crystals as a pnictogen bond donor. Molecules, Basel, v. 27, p. 3421-3473, 2022b. DOI: https://doi.org/10.3390/molecules27113421. DOI: https://doi.org/10.3390/molecules27113421

VARADWAJ, P. R. Does oxygen feature chalcogen bonding? Molecules, Basel, v. 24, p. 3166-3183, 2019. DOI: https://doi.org/10.3390/molecules24173166. DOI: https://doi.org/10.3390/molecules24173166

VARADWAJ, P.; VARADWAJ, A.; MARQUES, H. Very strong chalcogen bonding: Is oxygen in molecules capable of forming it? a first-principles perspective. Authorea, Hoboken, p. 1-25, 2020. DOI: 10.22541/au.159248992.24101274. DOI: https://doi.org/10.22541/au.159248992.24101274

VARGAS, R.; GARZA, J.; DIXON, D. A.; HAY*, B. P. How strong is the Cα-H···O = C hydrogen bond? Journal of the American Chemical Society, Washington, v. 122, p. 4750-4755, 2000. DOI: https://doi.org/10.1021/ja993600a. DOI: https://doi.org/10.1021/ja993600a

VEIS, L.; VIŠŇÁK, J.; NISHIZAWA, H.; NAKAI, H.; PITTNER*, J. Quantum chemistry beyond Born– Oppenheimer approximation on a quantum computer: A simulated phase estimation study. International Journal of Quantum Chemistry, New York, v. 116, p. 1328-1336, 2016. DOI: https://doi.org/10.1002/qua.25176. DOI: https://doi.org/10.1002/qua.25176

VIANA, H. E. B.; PORTO, P. A. O processo de elaboração da teoria atômica de John Dalton. Química Nova na Escola, São Paulo, n. 20, p. 4-12, 2007. DOI: http://qnesc.sbq.org.br/online/cadernos/07/a03.pdf.

VLADILO, G. HASSANALI, A. Hydrogen bonds and life in the universe. Life, Basel, v. 8, p. 1-22, 2018. DOI: http://doi.org/10.3390/life8010001. DOI: https://doi.org/10.3390/life8010001

VOGEL, L.; WONNER, P.; HUBER, S. M. Chalcogen bonding: an overview. Angewandte Chemie International Edition, Weinheim, v. 58, p. 1880-1891, 2019. DOI: https://doi.org/10.1002/anie.201809432. DOI: https://doi.org/10.1002/anie.201809432

VON DER LINDEN, W.; BERGER, E.; VALÁŠEK, P. The Hubbard-Holstein model. Journal of Low Temperature Physics, New York, v. 99, p. 517-525, 1995. DOI: https://doi.org/10.1007/BF00752333. DOI: https://doi.org/10.1007/BF00752333

WANG, L.; LI, X.; ZENG, Y.; MENG, L.; ZHANG*, X. Enhancing effects of π-hole tetrel bonds on the σ-hole interactions in complexes involving F2TO (T=Si, Ge, Sn). Structural Chemistry, Deerfield Beach, v. 30, p. 1301-1313, 2019. DOI: https://doi.org/10.1007/s11224-018-1274-2. DOI: https://doi.org/10.1007/s11224-018-1274-2

WANG, R.; LIU, H.; LI*, Q.; SCHEINER*, S. Xe···chalcogen aerogen bond. Effect of substituents and size of chalcogen atom. Physical Chemistry Chemical Physics, Cambridge, v. 22, p. 4115-4121, 2020. DOI: https://doi.org/10.1039/C9CP06648A. DOI: https://doi.org/10.1039/C9CP06648A

WANG, S. -J.; LI, Y.; WU, D.; LI*, Z. -R. Metal hydrides as sodium bond acceptors: hydride-sodium bond in the XH···NaH (X = HBe, LiBe, NaBe, HMg, LiMg, and NaMg) complexes. Molecular Physics, London, v. 110, p. 3053-3060, 2012. DOI: https://doi.org/10.1080/00268976.2012.695807. DOI: https://doi.org/10.1080/00268976.2012.695807

WANG, X.; LI, B.; LI, Y.; WANG*, H.; NI, Y.; WANG, H. The influence of monomer deformation on triel and tetrel bonds between TrR3/TR4 (Tr = Al, Ga, In; T = Si, Ge, Sn) and N-base (N-base = HCN, NH3, CN-). Computational and Theoretical Chemistry, Amsterdam, v. 1201, p. 113268-113277, 2021. DOI: https://doi.org/10.1016/j.comptc.2021.113268. DOI: https://doi.org/10.1016/j.comptc.2021.113268

WEINHOLD, F.; LANDIS, C. R.; GLENDENING, E. D. What is NBO analysis and how is it useful? International Reviews in Physical Chemistry, Sevenoaks, v. 35, p. 399-440, 2016. DOI: https://doi.org/10.1080/0144235X.2016.1192262. DOI: https://doi.org/10.1080/0144235X.2016.1192262

WYSOKINSKI*, R.; ZIERKIEWICZ, W.; MICHALCZYK, M.; SCHEINER*, S. How many pnicogen bonds can be formed to a central atom simultaneously? Journal of Physical Chemistry A, Washington, v. 124, p. 2046-2056, 2020. DOI: https://dx.doi.org/10.1021/acs.jpca.0c00257. DOI: https://doi.org/10.1021/acs.jpca.0c00257

XIA, T.; LI, D.; CHENG, L. Theoretical analysis of the spodium bonds in HgCl2···L (L = ClR, SR2, and PR3) dimers. Chemical Physics, Cambridge, v. 539, p. 110978, 2020. DOI: https://doi.org/10.1016/j.chemphys.2020.110978. DOI: https://doi.org/10.1016/j.chemphys.2020.110978

YÁÑEZ, M.; SANZ, P.; MÓ, O.; ALKORTA, I.; ELGUERO, J. Beryllium bonds, do they exist? Journal of Chemical Theory and Computation, Washington, v. 5, p. 2763-2771, 2009. DOI: https://doi.org/10.1021/ct900364y. DOI: https://doi.org/10.1021/ct900364y

YANG, Q.; WU, Q.; ZHANG, X.; YANG, X.; LI*, Q. Hydrogen and halogen bonds formed by MCO3 (M=Zn, Cd) and their enhancement by a spodium bond. Molecular Physics, London, v. 120, n. 14, 2022. DOI: https://doi.org/10.1080/00268976.2022.2102548. DOI: https://doi.org/10.1080/00268976.2022.2102548

YOURDKHANI, S.; KORONA, T.; HADIPOUR, N. L. Interplay between tetrel and triel bonds in RC6H4CNMF3CNBX3 complexes: a combined symmetry-adapted perturbation theory, møller-plesset, and quantum theory of atoms-in-molecules study. Journal of Computational Chemistry, New York, v. 36, p. 2412-2428, 2015. DOI: https://doi.org/10.1002/jcc.24226. DOI: https://doi.org/10.1002/jcc.24226

ZHANG, J., CHEN, P., YUAN, B., JI, W., CHENG, Z., QIU*, X. Real-space identification of intermolecular bonding with atomic force microscopy. Science, Washington, v. 342, p. 611-614, 2013. DOI: https://doi.org/10.1126/science.1242603. DOI: https://doi.org/10.1126/science.1242603

ZHANG, Z.; LI, D.; JIANG, W; WANG*, Z. The electron density delocalization of hydrogen bond systems. Advances in Physics: X, Oxford, v. 3, p. 297-314, 2018. DOI: https://doi.org/10.1080/23746149.2018.1428915. DOI: https://doi.org/10.1080/23746149.2018.1428915

ZHUANG, W. R.; WANG, Y.; CUI, P.-F.; XING, L.; LEE, J.; KIM, D.; JIANG, H.-L.; OH*, Y.-K. Applications of π-π stacking interactions in the design of drug-delivery systems. Journal of Controlled Release, Amsterdam v. 294, p. 311-326, 2019. DOI: https://doi.org/10.1016/j.jconrel.2018.12.014. DOI: https://doi.org/10.1016/j.jconrel.2018.12.014

ZIERKIEWICZ, W.; MICHALCZYK, M.; SCHEINER, S. Aerogen bonds formed between AeOF2 (Ae = Kr, Xe) and diazines: comparisons between σ-hole and π-hole complexes. Physical Chemistry Chemical Physics, Cambridge, v. 20, p. 4676-4687, 2018. DOI: https://doi.org/10.1039/C7CP08048D. DOI: https://doi.org/10.1039/C7CP08048D

Downloads

Publicado

2023-01-18

Como Citar

Oliveira, B. G. de. (2023). Porque grande parte da Química pode ser indiscutivelmente não ligada?. Semina: Ciências Exatas E Tecnológicas, 43(2), 211–229. https://doi.org/10.5433/1679-0375.2022v43n2p211

Edição

Seção

Artigos de Revisão
Loading...