Modified sol-gel synthesis of lithium ternary oxide
DOI:
https://doi.org/10.5433/1679-0375.2022v43n1p21Keywords:
Sol-gel, Lithium-ion batteries, Synthesis, Size-strainAbstract
Lithium-ion batteries currently equip portable electronic devices, such as smartphones and laptops, and are the choice to power electric vehicles. The scarcity of raw materials in nature, however, has required the development of new technologies and the ternary lithium compound LiNi1/3Mn1/3Co1/3O2 has stood out as an alternative for replacing part of the cobalt in LiCoO2 by nickel and manganese, which are more abundant, reducing the electrode’s cost. The sol-gel route for synthesis of ternary electrode materials has been widely used, but it faces problems of volumetric expansion due to the decomposition of organic material during calcination. To improve the synthesis of the ternary compound, a modified sol-gel route with control of the heating kinetics in the pre-calcination step and without pH control was investigated in this study. The compound was analyzed by X-ray diffraction, Rietveld refinement, Fourier transform infrared absorption spectroscopy, and Raman that showed the purification of the ternary phase with appropriate crystallinity for application as electrode in batteries from 700 ºC. In conclusion, ternary synthesis with rate control during heat treatment may be a useful alternative for industrial scale-up production.
Downloads
References
BRAUER, G. Handbook of preparative inorganic chemistry. 2nd ed. New York: Academic Press, 1965.
BURTON, A. W.; ONG, K.; REA, T.; CHAN, I. Y. On the estimation of average crystallite size of zeolites from the Scherrer equation: a critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous and Mesoporous Materials, Amsterdam, v. 117, n. 1/2, p. 75-90, 2009. DOI: https://doi.org/10.1016/j.micromeso.2008.06.010.
CAO, X. et al. Synthesis and characterization of Lini1/3CO1/3MN1/3O2 as cathode materials for li-ion batteries via an efficacious sol- gel method. Int. J. Electrochem Sci., Bor, v. 11, p. 5267–5278, 2016. DOI: 10.20964/2016.06.93
CHO, T. H.; PARK, S. M.; YOSHIO, M.; HIRAI, T.; HIDESHIMA, Y. Effect of synthesis condition on the structural and electrochemical co-precipitation method. Journal of Power Sources, Lausanne, v. 142, n. 1/2, p. 306–312, 2005. DOI: https://doi.org/10.1016/j.jpowsour.2004.10.016.
GONCALVES, N. S. et al. Size–strain study of NiO nanoparticles by X-ray powder diffraction line broadening. Materials letters, Amsterdam, v. 72, p. 36-38, 2012.
HOANG, K.; JOHANNES, M. Defect physics and chemistry in layered mixed transition metal ox-ide cathode materials: (NI,CO,MN) VS (NI,CO,AL). Chemistry of Materials, Washington, v. 28, n. 5, p. 1325–1334, 2016. DOI: https://doi.org/10.1021/acs.chemmater.5b04219.
JAMIL, S.; WANG, G.; FASEHULLAH, M.; MAOWEN, X. Challenges and prospects of nickel-rich layered oxide cathode material. Journal of Alloys and Compounds, Amsterdam, V. 909, n. 15, p. 1–28, 2022. DOI: https://doi.org/10.1016/j.jallcom.2022.164727.
KENNEDY, L. J.; MAGESAN, P.; VIJAYA, J. J.; UMAPATHY, M. J.; ARULDOSS, U. Biominerals doped nanocrystalline nickel oxide as efficient humidity sensor: a green approach mater. Mater Sci Eng B Solid State Mater Adv Technol., Lausanne, v. 190, p. 13–20, 2014.
KIZILTAS-YAVUZ, N.; HERKLOTZ, M.; HASHEM, A. M.; BUZEID, H. M.A.; SCHWARZ, B.; EHRENBERG, H.; MAUGER, A.; ULIEN, C. M. J. Synthesis, structural, magnetic and electrochemical properties of LINI1/3MN1/3CO1/3O2 prepared by a sol–gel method using table sugar as chelating agent. Electrochimica acta, Oxford, v. 113, p. 313–321, 2013. DOI: https://doi.org/10.1016/j.electacta.2013.09.065.
LI, X.; WEI, Y. J.; EHRENBERG, H. Characterizations on the structural and electrochemical properties of LINI1/3MN1/3CO1/3O2 prepared by a wet-chemical process. Solid State Ionics. Amsterdam, v. 178, n. 39/40, p. 1969–1974, 2008.
LIN, S. P.; FUNG, K. Z.; HON, Y. M.; HON, M. H. Crystallization mechanism of linio 2 synthesized by pechini method. Journal of Crystal Growth, Amsterdam, v. 226, p. 148–157, 2001. DOI: https://doi.org/10.1016/s0022-0248(01)01363-X.
NASSAR, M. Y.; AHMED, I. S. Hydrothermal synthesis of cobalt carbonates using different counter ions: an efficient precursor to nano-sized cobalt oxide (CO3O4). Polyhedron, London, v. 30, n. 15, p. 2431–2437, 2011. DOI: https://doi.org/10.1016/j.poly.2011.05.039.
MANIAMMAL, K.; MADHU, G.; BIJU, V. X-ray diffraction line profile analysis of nanostructured nickel oxide: shape factor and convolution of crystallite size and microstrain contributions. Physica E: Low-dimensional Systems and Nanostructures, Amsterdam, v. 85, p. 214-222, 2017. DOI: https://doi.org/10.1016/j.physe.2016.08.035
OHZUKU, T.; MAKIMURA, Y. Layered lithium insertion material of Lico 1/3 NI 1/3 MN 1/3 O2 for lithium-ion batteries. Chem. Lett., Tokyo, v. 30, n. 7, p. 642–643, 2001.
RILEY, L. A. et al. Electrochemical effects of ald surface modification on combustion synthesized LINI1/3MN1/3CO1/3O2 as a layered-cathode material. Journal of Power Sources, Lausanne, v. 196, n. 6, p. 3317– 3324, 2011.
SATHIYA, M.; PRAKASH, A. S.; RAMESHA, K.; SHUKLA, A. K. Rapid synthetic routes to prepare LINI1/3MN1/3CO1/3O2 as a high voltage, high-capacity li-ion battery cathode material. Mater. Res. Bull., New York, v. 44, n. 10, p. 1990–1994, 2009. DOI: 10.1016/j.materresbull.2009.06.007.
SHAJU, K. M.; RAO, G. V. S.; CHOWDARI, B. V. R. Performance of layered LI (NI 1/3 CO 1/3 MN 1/3) O2 as cathode for li-ion batteries. Electrochimica acta, Oxford, v. 48, p. 145–151, 2002.
VAALMA, C.; BUCHHOLZ, D.; WEIL, M.; PASSERINI, S. A cost and resource analysis of sodium-ion bat-teries. Nature Reviews Materials, London, v. 3, n. 4, p.1-11, 2018.
WANG, X.; ZHOU, H.; CHEN, Z.; MENG, X. Synchrotron-based X-ray diffraction and absorption spectroscopy studies on layered LiNixMnyCozO2 cathode materials: a review. Energy Storage Materials, Amsterdam, v. 49, p. 181–208, 2022. DOI: https://doi.org/10.1016/j.ensm.2022.04.012
ZHANG, Y.; WU, X.; LIN, Y.; WANG, D.; ZHANG, C.; HE, D. Synthesis of LINI1/3CO1/3MN1/3O2 cathode material by a modified sol–gel method for lithium-ion battery. Journal of Sol-Gel Science and Technology, Boston, v. 68, n. 2, p. 169–174, 2013. DOI: 10.1007/s10971-013-3148-9.
Downloads
Published
How to Cite
Issue
Section
License
The Copyright Declaration for articles published in this journal is the author’s right. Since manuscripts are published in an open access Journal, they are free to use, with their own attributions, in educational and non-commercial applications. The Journal has the right to make, in the original document, changes regarding linguistic norms, orthography, and grammar, with the purpose of ensuring the standard norms of the language and the credibility of the Journal. It will, however, respect the writing style of the authors. When necessary, conceptual changes, corrections, or suggestions will be forwarded to the authors. In such cases, the manuscript shall be subjected to a new evaluation after revision. Responsibility for the opinions expressed in the manuscripts lies entirely with the authors.
This journal is licensed with a license Creative Commons Attribution-NonCommercial 4.0 International.