Modified sol-gel synthesis of lithium ternary oxide

Modified sol-gel synthesis of lithium ternary oxide

Authors

DOI:

https://doi.org/10.5433/1679-0375.2022v43n1p21

Keywords:

Sol-gel, Lithium-ion batteries, Synthesis, Size-strain

Abstract

Lithium-ion batteries currently equip portable electronic devices, such as smartphones and laptops, and are the choice to power electric vehicles. The scarcity of raw materials in nature, however, has required the development of new technologies and the ternary lithium compound LiNi1/3Mn1/3Co1/3O2 has stood out as an alternative for replacing part of the cobalt in LiCoO2 by nickel and manganese, which are more abundant, reducing the electrode’s cost. The sol-gel route for synthesis of ternary electrode materials has been widely used, but it faces problems of volumetric expansion due to the decomposition of organic material during calcination. To improve the synthesis of the ternary compound, a modified sol-gel route with control of the heating kinetics in the pre-calcination step and without pH control was investigated in this study. The compound was analyzed by X-ray diffraction, Rietveld refinement, Fourier transform infrared absorption spectroscopy, and Raman that showed the purification of the ternary phase with appropriate crystallinity for application as electrode in batteries from 700 ºC. In conclusion, ternary synthesis with rate control during heat treatment may be a useful alternative for industrial scale-up production.

Downloads

Download data is not yet available.

Author Biographies

Maria Gabriella Detone Guaita, Universidade Estadual de Londrina - UEL

Prof. Dr. at the Department of Chemistry, Universidade Estadual de Londrina, Londrina, Paraná.

Luiz Henrique Dall’Antonia, Universidade Estadual de Londrina - UEL

Prof. Dr. at the Department of Physic, Universidade Estadual de Londrina, Londrina, Paraná.

Paulo Rogério Catarini da Silva, Universidade Estadual de Londrina - UEL

Prof. Dr. at the Department of Physic, Universidade Estadual de Londrina, Londrina, Paraná

Alexandre Urbano, Universidade Estadual de Londrina - UEL

MSc. by the Department of Chemistry, Universidade Estadual de Londrina, Londrina, Paraná.

References

BORCHERT, H.; SHEVCHENKO, E. V., ROBERT, A.; MEKIS, I.; KORNOWSKI, A.; GRÜBEL, G.; WELLER, H. Determination of nanocrystal sizes: a comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles. Langmuir, Washington, v. 21, n. 5, p. 1931-1936, 2005.

BRAUER, G. Handbook of preparative inorganic chemistry. 2nd ed. New York: Academic Press, 1965.

BURTON, A. W.; ONG, K.; REA, T.; CHAN, I. Y. On the estimation of average crystallite size of zeolites from the Scherrer equation: a critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous and Mesoporous Materials, Amsterdam, v. 117, n. 1/2, p. 75-90, 2009. DOI: https://doi.org/10.1016/j.micromeso.2008.06.010.

CAO, X. et al. Synthesis and characterization of Lini1/3CO1/3MN1/3O2 as cathode materials for li-ion batteries via an efficacious sol- gel method. Int. J. Electrochem Sci., Bor, v. 11, p. 5267–5278, 2016. DOI: 10.20964/2016.06.93
CHO, T. H.; PARK, S. M.; YOSHIO, M.; HIRAI, T.; HIDESHIMA, Y. Effect of synthesis condition on the structural and electrochemical co-precipitation method. Journal of Power Sources, Lausanne, v. 142, n. 1/2, p. 306–312, 2005. DOI: https://doi.org/10.1016/j.jpowsour.2004.10.016.

GONCALVES, N. S. et al. Size–strain study of NiO nanoparticles by X-ray powder diffraction line broadening. Materials letters, Amsterdam, v. 72, p. 36-38, 2012.

HOANG, K.; JOHANNES, M. Defect physics and chemistry in layered mixed transition metal ox-ide cathode materials: (NI,CO,MN) VS (NI,CO,AL). Chemistry of Materials, Washington, v. 28, n. 5, p. 1325–1334, 2016. DOI: https://doi.org/10.1021/acs.chemmater.5b04219.

JAMIL, S.; WANG, G.; FASEHULLAH, M.; MAOWEN, X. Challenges and prospects of nickel-rich layered oxide cathode material. Journal of Alloys and Compounds, Amsterdam, V. 909, n. 15, p. 1–28, 2022. DOI: https://doi.org/10.1016/j.jallcom.2022.164727.

KENNEDY, L. J.; MAGESAN, P.; VIJAYA, J. J.; UMAPATHY, M. J.; ARULDOSS, U. Biominerals doped nanocrystalline nickel oxide as efficient humidity sensor: a green approach mater. Mater Sci Eng B Solid State Mater Adv Technol., Lausanne, v. 190, p. 13–20, 2014.

KIZILTAS-YAVUZ, N.; HERKLOTZ, M.; HASHEM, A. M.; BUZEID, H. M.A.; SCHWARZ, B.; EHRENBERG, H.; MAUGER, A.; ULIEN, C. M. J. Synthesis, structural, magnetic and electrochemical properties of LINI1/3MN1/3CO1/3O2 prepared by a sol–gel method using table sugar as chelating agent. Electrochimica acta, Oxford, v. 113, p. 313–321, 2013. DOI: https://doi.org/10.1016/j.electacta.2013.09.065.

LI, X.; WEI, Y. J.; EHRENBERG, H. Characterizations on the structural and electrochemical properties of LINI1/3MN1/3CO1/3O2 prepared by a wet-chemical process. Solid State Ionics. Amsterdam, v. 178, n. 39/40, p. 1969–1974, 2008.

LIN, S. P.; FUNG, K. Z.; HON, Y. M.; HON, M. H. Crystallization mechanism of linio 2 synthesized by pechini method. Journal of Crystal Growth, Amsterdam, v. 226, p. 148–157, 2001. DOI: https://doi.org/10.1016/s0022-0248(01)01363-X.

NASSAR, M. Y.; AHMED, I. S. Hydrothermal synthesis of cobalt carbonates using different counter ions: an efficient precursor to nano-sized cobalt oxide (CO3O4). Polyhedron, London, v. 30, n. 15, p. 2431–2437, 2011. DOI: https://doi.org/10.1016/j.poly.2011.05.039.

MANIAMMAL, K.; MADHU, G.; BIJU, V. X-ray diffraction line profile analysis of nanostructured nickel oxide: shape factor and convolution of crystallite size and microstrain contributions. Physica E: Low-dimensional Systems and Nanostructures, Amsterdam, v. 85, p. 214-222, 2017. DOI: https://doi.org/10.1016/j.physe.2016.08.035

OHZUKU, T.; MAKIMURA, Y. Layered lithium insertion material of Lico 1/3 NI 1/3 MN 1/3 O2 for lithium-ion batteries. Chem. Lett., Tokyo, v. 30, n. 7, p. 642–643, 2001.

RILEY, L. A. et al. Electrochemical effects of ald surface modification on combustion synthesized LINI1/3MN1/3CO1/3O2 as a layered-cathode material. Journal of Power Sources, Lausanne, v. 196, n. 6, p. 3317– 3324, 2011.

SATHIYA, M.; PRAKASH, A. S.; RAMESHA, K.; SHUKLA, A. K. Rapid synthetic routes to prepare LINI1/3MN1/3CO1/3O2 as a high voltage, high-capacity li-ion battery cathode material. Mater. Res. Bull., New York, v. 44, n. 10, p. 1990–1994, 2009. DOI: 10.1016/j.materresbull.2009.06.007.

SHAJU, K. M.; RAO, G. V. S.; CHOWDARI, B. V. R. Performance of layered LI (NI 1/3 CO 1/3 MN 1/3) O2 as cathode for li-ion batteries. Electrochimica acta, Oxford, v. 48, p. 145–151, 2002.

VAALMA, C.; BUCHHOLZ, D.; WEIL, M.; PASSERINI, S. A cost and resource analysis of sodium-ion bat-teries. Nature Reviews Materials, London, v. 3, n. 4, p.1-11, 2018.

WANG, X.; ZHOU, H.; CHEN, Z.; MENG, X. Synchrotron-based X-ray diffraction and absorption spectroscopy studies on layered LiNixMnyCozO2 cathode materials: a review. Energy Storage Materials, Amsterdam, v. 49, p. 181–208, 2022. DOI: https://doi.org/10.1016/j.ensm.2022.04.012

ZHANG, Y.; WU, X.; LIN, Y.; WANG, D.; ZHANG, C.; HE, D. Synthesis of LINI1/3CO1/3MN1/3O2 cathode material by a modified sol–gel method for lithium-ion battery. Journal of Sol-Gel Science and Technology, Boston, v. 68, n. 2, p. 169–174, 2013. DOI: 10.1007/s10971-013-3148-9.

Downloads

Published

2022-05-16

How to Cite

Guaita, M. G. D., Dall’Antonia, L. H., Silva, P. R. C. da, & Urbano, A. (2022). Modified sol-gel synthesis of lithium ternary oxide. Semina: Ciências Exatas E Tecnológicas, 43(1), 21–30. https://doi.org/10.5433/1679-0375.2022v43n1p21

Issue

Section

Original Article

Most read articles by the same author(s)

Loading...