Numerical study of hydrodynamic resistance on a sportive sprint hull
DOI:
https://doi.org/10.5433/1679-0375.2021v42n2p131Keywords:
Numerical methods, Numerical simulation, Finite-Volume-Method, Kayak hull design, Drag, Free-Surface, TurbulenceAbstract
In this work we perform a numerical study on the flow around the hulls of competition kayaks with the aim of predicting accurate drag forces. The numerical simulations were first performed using the Wigley hull geometry, a typical validation case for flows around marine vessels. The total drag force and wave profiles of the hull were determined for different Froude numbers and compared with experimental measurements. After validation and verification of the numerical method, the flow around two competition sprint kayaks was investigated. The drag force was calculated and compared with experimental and numerical dataDownloads
References
BERBEROVIC E., VAN HINSBERG N.P., JAKIRLI ´ C´ S., ROISMAN I., TROPEA Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution. Physical Review, College Park, v. 79, p. 036306, 2009. DOI: 10.1103/physreve.79.036306.
BOUCHER, J.-P.; LABBÉ, R.; CLANET, C.; BENZAQUEN, M. Thin or bulky: optimal aspect ratios for ship hulls. Phys. Rev. Fluids, College Park, v. 3, p. 074802, 2018. DOI: 10.1103/PhysRevFluids.3.074802.
GISEN, D. Generation of a 3D mesh using snappy HexMesh featuring anisotropic refinement and near-wall layers. In: INTERNATIONAL CONFERENCE ON HYDROSCIENCE ENGINEERING, 11., 2014, Karlsruhe. Proceedings [. . . ].Karlsruhe: Bundesanstalt für Wasserbau, 2014. p. 983-990.
GOMES, B. B.; CONCEIÇÃO, F. A.; PENDERGAST, D. R.; SANDERS, R.; VAZ, M. A. P.; VILAS-BOAS, J. P. Is passive drag dependent on the interaction of kayak design and paddler weight in flat-water kayaking? Sports Biomechanics, [London], v. 14, p. 394-403, 2015. DOI: 10.1080/14763141.2015.1090475.
GOMES, B. B.; MACHADO, L.; RAMOS, N. V.; CONCEIÇÃO, F. A. V.; SANDERS, R. H.; VAZ, M. A. P.; VILAS-BOAS, J. P.; PENDERGAST, D. R. Effect of wetted surface area on friction, pressure, wave and total drag of a kayak. Sports Biomechanics, [London], v. 17, p. 453- 461, 2018.
GOMES, B. B.; RAMOS, N.; CONCEIÇÃO, F.; VILASBOAS, J. P.; VAZ, M. A. P. Field Assessment of the Kayaks’ Total Drag Force. In: INTERNATIONAL CONFERENCE ON EXPERIMENTAL MECHANICS, 15., 2012, Porto. Proceedings [. . . ]. Porto: [s. n.], 2012. p. 1-2.
HARPAL, N.; PATEL, C. Numerical modeling of resistance for a conceptual seatrain. Academic Paper Contest, 2011. CD-adapco.
HARRISON, S. M.; GUNN, D. F.; CLEARY, P. W. Kayak performance modelling using SPH. In: INTERNATIONAL CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS IN THE MINERALS AND PROCESS INDUSTRIES (CFD2012), 9., 2012, Melbourne. Conference [. . . ]. Melbourne: [s. n.], 2012. p. 1-6.
HELLSTEN, A. Some Improvements in menter’s kow SST turbulence model. In: AIAA FLUID DYNAMICS, 29., 1997, Albuquerque. Conference [. . . ]. Albuquerque: NM, 1997. v. AIAA-98-2554.
INOK, F.; LAVROV, A.; SOARES, C. G. Analysis of the free surface turbulent flow around a forward moving Wigley hull with OpenFOAM: developments in maritime transportation and exploitation of sea resources. London: Francis Taylor Group, 2014.
KAJITANI, H.; MIYATA, H.; IKEHATA, M.; TANAKA, H.; ADACHI, H.; NAMIMATSU, M.; OGIWARA, S. The summary of the cooperative experiment on wigley parabolic model in japan. Japan: Defense Technical Information Center, 1983.
LAURENT, A.; ROUARD, A.; MANTHA, V. R.; MARINHO, D. A.; SILVA, A. J.; ROUBOA, A. I. The Computational Fluid Dynamics Study of Orientation Effects of Oar Blade. Journal of Applied Biomechanics, Champaign, v. 29, p. 23-32, 2013.
MANTHA, V. R.; SILVA, A. J.; MARINHO, D. A.; ROUBOA, A. Numerical Simulation of Two-Phase Flow Around Flatwater Competition Kayak Design-Evolution Models. Journal of Applied Biomechanics, Champaign, v. 29, p. 270-278, 2013. DOI: 10.1123/jab.29.3.270.
MENTER, F. R. Two-equation Eddy-Viscosity turbulence models for engineering applications. AIAA Journal, [Reston], v. 32, p. 1598-1605, 1994.
MENTER, F. R.; KUNTZ, M.; LANGTRY, R. Ten years of industrial experience with the SST turbulence model, in turbulence, heat and mass transfer 4. Danbury: Begell House, 2003.
MICHAEL, J. S.; SMITH, R.; ROONEY, K. B. Determinants of kayak paddling 52 performance. Sports Biomechanics, [London], v. 8, p. 167-179, 2009. DOI: https://doi.org/10.1080/14763140902745019.
NAKASHIMA, M.; KITAZAWA, A.; NAKAGAKI, K.; ONOTO, N. Simulation to clarify the effect of paddling motion on the hull behavior of a single kayak in a sprint race. Sports Eng., London, v. 20, p. 133-139, 2017.
NASA. Menter shear stress transport model. 2014. Available from: http://turbmodels.larc.nasa.gov/sst.html. Access in: Jan. 02, 2021.
NELO. M. A. R. Kayaks Lda. Vila do Conde: Nelo, [2021]. Available from: http://www.nelo.eu/. Access in: Jan. 02, 2021.
OPENFOAM FOUNDATION. The Open Source Computational Fluid Dynamics (CFD) Toolbox. 2021. Available from: <ht tp : / /openfoam.org/. Access in: Jan. 02, 2021.
PEREZ, C. G.; TAN, M.; WILSON, P. Validation and verification of hull resistance components using a commercial CFD code. In: NUMERICAL TOWING TANK SYMPOSIUM, 11., 2008, Brest. Proceedings [. . . ]. Brest: [S .l.], 2008. p. 1-6.
PRANZITELLI, A.; NICOLA, C.; MIRANDA, S. Steadystate calculations of free surface flow around ship hulls and resistance predictions. In: SYMPOSIUM ON HIGH SPEED MARINE VEHICLES (HSMV), 2011, Naples. Proceedings [. . . ]. Naples: [s. n.], 2011. p. 1-14.
RICHARDSON, L. F. The approximate arithmetical solution by finite differences of physical problems including differential equations, with an application to the stresses in a masonry dam. Philosophical Transactions Of The Royal Society A, London, v. 10, p. 459-470, 1911.
ROBINSON, M.G.; HOLT L. E.; PELHAM T. W. The Technology of Sprint Racing Canoe and Kayak Hull and Paddle Designs. International Sports Journal, Newark, v. 6, p. 68-85, 2002.
TROTTENBERG, U.; OOSTERLEE, C. W.; SCHULLER, A. Multigrid. [London]: Elsevier, 2000.
TAYLOR, D.W. Naval Ship Research and Development, Proceedings on the Workshop on Ship Wave-Resistance Computations, [Bethesda], Maryland, 1979.
TZABIRAS, G. D.; POLYZOS, S. P.; SFAKIANAKI, K.; DIAFAS, V.; VILLIOTIS, A. D.; CHRISIKOPOULOS, K.; KALOUPSIS, S. Experimental and Numerical Study of the Flow Past the Olympic Class K-1 Flat Water Racing Kayak at Steady Speed. The Sport Journal, [s .l.], v. 13, 2010.
UBBINK, O. Numerical prediction of two fluid systems with sharp interfaces. 1997. Tesis (Doctoral) - University of London, London, 1997.
WILLMAN, S. Lift and drag of kayak rudders. 2011. Dissertation (Master) - University of Oslo, Oslo, 2011.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 SEMINA: Ciências Exatas e Tecnológicas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Copyright Declaration for articles published in this journal is the author’s right. Since manuscripts are published in an open access Journal, they are free to use, with their own attributions, in educational and non-commercial applications. The Journal has the right to make, in the original document, changes regarding linguistic norms, orthography, and grammar, with the purpose of ensuring the standard norms of the language and the credibility of the Journal. It will, however, respect the writing style of the authors. When necessary, conceptual changes, corrections, or suggestions will be forwarded to the authors. In such cases, the manuscript shall be subjected to a new evaluation after revision. Responsibility for the opinions expressed in the manuscripts lies entirely with the authors.
This journal is licensed with a license Creative Commons Attribution-NonCommercial 4.0 International.