Anaerobic co-digestion of acerola (Malphigia emarginata) agro-industry effluent with domestic sewage at mesophilic and thermophilic conditions

Anaerobic co-digestion of acerola (Malphigia emarginata) agro-industry effluent with domestic sewage at mesophilic and thermophilic conditions

Authors

DOI:

https://doi.org/10.5433/1679-0375.2021v42n1p85

Keywords:

Biodegradation, Agro-industrial effluent, Temperature, Methanation

Abstract

This study evaluated the effect of temperature on the anaerobic co-digestion of West Indian Cherry agro-industry effluent (EAV) and domestic sewage (EDT). The assays were performed in triplicates of reactor flasks using treatments with different mixture compositions (T1=5%EDT+95%EAV;T2=20%EDT+80%EAV;T3=30%EDT+70%EAV) and anaerobic sludge as inoculum (5g.L-1), at mesophilic (35°C) and thermophilic (55°C) temperatures. The analyses of soluble chemical oxygen demand (DQOs) and volatile fatty acids (AGV) were performed by determining the removal efficiency of the DQOs, the decay rate constant of the DQO (Kd), and the percentages of anaerobic biodegradability (%BD) and methanation (%M). The inoculum biomass of the treatments was observed through scanning electron microscopy at the end of the degradation process (12 days). Regardless of the temperature, the anaerobic digestion was considered efficient, with biodegradability above 60%. The mesophilic temperature favored the anaerobic co-digestion for all mixture compositions, presenting more diversified and structured biomass at the end of the assays, as well as higher removal efficiencies of the DQOs and methanization, especially for T3 at 35°C (63% and 51%, respectively). Furthermore, the kinetics of the degradation process proved to be more accelerated at mesophilic conditions (Kd 0.1d-1) and in the treatments with a higher percentage of sewage (T2M and T3M).

Downloads

Download data is not yet available.

Author Biographies

Andreza Carla Lopes André, Universidade Federal do Vale do São Francisco - UNIVASF

Agri. and Environ. Engineering, UNIVASF, Juazeiro, Bahia, Brazil. 

Eduardo Souza Costa Barros, Universidade Federal do Vale do São Francisco - UNIVASF

Master in Agricultural Engineer, UNIVASF, Juazeiro, Bahia, Brazil. 

Paula Tereza de Souza e Silva, Embrapa semiárido

Researcher at EMBRAPA semiarid, Petrolina, Pernambuco, Brazil.

Dian Lourençoni, Universidade Federal do Vale do São Francisco - UNIVASF

Prof. Dr. Dept of Agri. and Environ. Engineering, UNIVASF, Juazeiro, Bahia, Brazil.

Miriam Cleide Cavalcante de Amorim, Universidade Federal do Vale do São Francisco - UNIVASF

Prof. Dr. Dept of Agri. and Environ. Engineering, UNIVASF, Juazeiro, Bahia, Brazil. 

References

AMANI, T.; NOSRATI, M.; SREEKRISHNAN, T. R. Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects – a review. Environmental Reviews, Canadian Science Publishing, [London], v. 18, p. 255-278, 2010. DOI: 10.1139/A10-011.

ANDRÉ, A. C. L.; AMORIM, M. C. C.; SILVA, K. C. D.; SILVA, P. T. S. Biochemical potential of methane of wastewater ultrafiltration in the processing of unriped green acerola (Malpighia emarginata). Semina: Ciências Exatas e Tecnológicas. v. 41, n. 2, p. 135-144, 2020. Doi: 10.5433/1679-0375.2020v41n2p135

ANDRÉ, A. C. L.; SILVA, R. T.; SILVA, K. C. D.; SILVA, P. T. S.; AMORIM, M. C. C. Biodegradabilidade anaeróbia de efluente do processamento da acerola verde. Revista Eletrônica de Gestão e Tecnologias Ambientais, Salvador, v. 7, n. 1, p. 26-36, 2019. DOI: 10.9771/gesta.v7i7.28070.

APHA – AMERICAN PUBLIC-HEALTH ASSOCIATION. Standard methods for the examination of water and wastewater. Washington (DC): [s.n.], 2012.

ARAÚJO, J. C.; TÉRAN, F. C.; OLIVEIRA, R. A.; NOUR, E. A. A.; MONTENEGRO, A. P.; CAMPOS, J. R.; VAZOLLER, R. F. Comparison of hexamethyldisilazane and critical point drying treatments for SEM analysis of anaerobic biofilms and granular sludge. Journal of Electron Microscopy, v. 52, n. 4, p. 429-433, 2003.

ATANDI, E.; RAHMAN, S. Prospect of anaerobic codigestion of dairy manure: a review. Environmental Technology reviews, Abington, v. 1, n. 1, p. 127-135, 2012. DOI: 10.1080/09593330.2012.698654.

BERTOLINO, S. M.; CARVALHO, C. F.; AQUINO, S. F. Caracterização e biodegradabilidade aeróbia e anaeróbia dos esgotos produzidos em campus universitário. Revista Engenharia Sanitária Ambiental, Rio Claro, v. 13, n. 3, p. 271-277, 2008. DOI: 10.1590/S1413-41522008000300005.

BOLZONELLA, D.; PAPA, M.; DA ROS, C; MUTHUKUMAR, L. A.; ROSSO, D. Winery wastewater treatment: a critical overview of advanced biological processes. Journal Critical Reviews in Biotechnology, Boca Raton, v. 39, n. 4, p. 489-507, 2019. DOI: 10.1080/07388551.2019.1573799.

BRASIL, M. S.; MATOS, A. T.; SILVA, C. M.; CECON, P. R.; SOARES, A. A. Modeling of pollution removal in constructed wetlands with horizontal subsurface flow. Agricultural Engineering Research, v. 13, p.48-56, 2007.

CHAGAS, R. C.; MATOS, A. T.; CECON, P. R.; MONACO, P. A. V.; FRANÇA, L. G. F. Cinética de remoção de matéria orgânica em sistemas alagados construídos cultivados com lírio amarelo. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 15, n. 11, 2011.

CHOW, W. L.; CHONG, S.; LIM, J. W.; CHAN, Y.J.; CHONG, M. F.; TIONG, T. J.; CHIN, J. K.; PAN, G. Anaerobic Co-Digestion of Wastewater Sludge: A Review of Potential Co-Substrates and Operating Factors for Improved Methane Yield. Processes, Basel, v. 8, n. 39, 2020. DOI: 10.3390/pr8010039.

CORREIA, G. T.; DEL BIANCHI, V. L. Tratamento biológico de água residuária da produção de farinha de mandioca utilizando reator anaeróbico compartimentado vertical (RACOV). Semina: Ciências Exatas e Tecnológicas, Londrina, v. 29, n. 2, p. 159-166, 2008.

CREMONEZ, P.A.; DE ROSSI, E.; FEROLDI, M.; TELEKEN, J.G.; FEIDEN, A.; DIETER, J. Codigestão de água residual de suinocultura e vinhaça sob diferentes condições térmicas. Revista de Ciências Agrárias, Lisboa, v. 38, n. 1, p. 103-110, 2015.

DE CLERCQ, D.; WEN, Z.; GOTTFRIED, O.; SCHMIDT, F.; FEI, V. A review of global strategies promoting the conversion of food waste to bioenergy via anaerobic digestion. Renewable and Sustainable Energy Reviews, [London], v. 79, p. 204-221, 2017. DOI: 10.1016/j.rser.2017.05.047.

ELBESHBISHY, E.; NAKHLA, G. Batch anaerobic codigestion of proteins and carbohydrates. Bioresource Technology, New York, v. 116, p. 170-178, 2012. DOI: 10.1016/j.biortech.2012.04.052.

ESPOSITO, G.; FRUNZO, L.; GIORDANO, A.; LIOTTA, F.; PANICO, A.; PIROZZI, F. Anaerobic co-digestion of organic wastes. Reviews Environmental Science and Bio/Technology, [Dordrecht], v. 11, p. 325-341, 2012. DOI: 10.1007/ s11157-012-9277-8.

FERREIRA, D. F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, Lavras, v. 35, n. 6, p. 1039-1042, 2011.

FLORÊNCIO, L. The fate of metanol in anaerobic bioreactors. 1994. Thesis (Phd) - Wageningen Agricultural
University, Wageningen, 1994.

HAGOS, K.; ZONG, J.; LI, D.; LIU, C.; LU, X. Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renewable and Sustainable Energy Reviews, [London], v. 76, p. 1485-1496, 2017. DOI: 10.1016/j.rser.2016.11.184.

HOLLIGER, C.; ALVES, M.; ANDRADE, D.; ANGELIDAKI, I.; ASTALS, S.; BAIER, U.; BOUGRIER, C., BUFFIERE, P., CARBALLA, M., DE WILDE, V., EBERTSEDER, F.; FERNANDEZ, B.; FICARA, E.; FOTIDIS, I.; FRIGON, J.-C.; DE LACLOS, H.F.; GHASIMI, D.S.M.; HACK, G.; HARTEL, M.; HEERENKLAGE, J.; HORVATH, I.S.; JENICEK, P.; KOCH, K.; KRAUTWALD, J.; LIZASOAIN, J.; LIU, J.; MOSBERGER, L.; NISTOR, M.; OECHSNER, H.; OLIVEIRA, J.V.; PATERSON, M.; PAUSS, A.; POMMIER, S.; PORQUEDDU, I.; RAPOSO, F.; RIBEIRO, T.; RUSCH PFUND, F.; STROMBERG, S.; TORRIJOS, M.; VAN EEKERT, M.; VAN LIER, J.; WEDWITSCHKA, H.; WIERINCK, I. Towards a standardization of biomethane potential tests. Water Science Technology. Colchester, v. 74, n. 11, p. 1-9, 2016. DOI: 10.2166/wst.2016.336

KIM, M.; KIM, D.; YUN, Y. Effect of operation temperature on anaerobic digestion of food waste: performance and microbial analysis. Fuel, London, v. 209, p. 598-605, 2017. DOI: 10.1016/j.fuel.2017.08.033.

LOPES, C. L.; GOMES, S. D.; LIMA-MODEL, A. N.; KREUTZ, C.; PASSIG, F. H. Cinética da remoção de matéria orgânica de água residuária de abatedouro de aves em reator compartimentado anaeróbio-aeróbio. In: SIMPÓSIO INTERNACIONAL SOBRE GERENCIAMENTO DE RESÍDUOS AGROPECUÁRIOS E AGROINDUSTRIAIS, 4., 2015, Rio de Janeiro. Anais [...]. Rio de Janeiro; [s.n.], 2015

MALEGORI, C.; MARQUES, E. J. N.; FREITAS, S. T.; PIMENTEL, M. F.; PASQUINI, C.; CASIRAGHI, E. Comparing the analytical performances of micro-NIR and FT0NIR spectrometers in the evaluation of acerola fruit quality, using PLS and SVM regression algorithms. Talanta, Oxford, v. 165, p. 112-116, 2017. DOI: 10.1016/j.talanta.2016.12.035.

METCALF, L.; EDDY, H. P. Wastewater engineering: treatment, disposal and reuse. 4. ed. New York: McGraw-HillBook, 2003.

MONTEFUSCO, N. E. G.; ANDRÉ, A. C. L.; BARBOSA, P. S.; MATOS, R. S.; AMORIM, M. C. C. Biodegradabilidade anaeróbia de efluentes da agroindústria aceroleira. In: ZUFFO, A. M. (org.). Engenharia sanitária e ambiental: tecnologias para a sustentabilidade 2. Ponta Grossa: Atena Editora, 2019. v. 2, p. 182-193. Ebook. ISBN 978-85-7247-250-0.

MUSSATI, M.; THOMPSON, C.; FUENTES, M.; AGUIRRE, P.; SCENNA, N. Characteristics of a methanogenic biofilm on sand particles in a fluidized bed reactor. Latin American Applied Research, v. 35, n. 4, p. 265-272, 2005.

NÁTHIA-NEVES, G.; NEVES, T. A.; BERNI, M.; DRAGONE, G.; MUSSATTO, S. I.; FORSTERCARNEIRO, T. Star-up phase of a two-stage anaerobic co-digestion process: hydrogen and methane production from food waste and vinasse from ethanol industry. Biofuel Research Journal v. 18, p. 813-820, 2018. DOI: 10.18331/BRJ2018.5.2.5.

NIKOLAEVA, S.; SÁNCHEZ, E.; BORJA, R.; RAPOSO, F.; COLMENAREJO, M. F.; MONTALVO, S.; JIMÉNEZ-RODRÍGUEZ. Kinetics of anaerobic degradation of screened dairy manure by upflow fixed bed digesters: Effect of natural zeolite addition. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, v. 44, n. 2, p. 146-154, 2009. DOI: 10.1080/10934520802539715.

PENHA, E. M.; BRAGA, N. A. S.; MATTA, V. M.; CABRAL, L. M. C.; MODESTA, R. C. D.; FREITAS, S. C. Utilização do retentado da ultrafiltração do suco de acerola na elaboração de licor. B. CEPPA, [S. l.], v. 19, n. 2, p. 267-276, 2001.

PUKASIEWICZ, S. R. M.; GOMES, S. D.; DE OLIVEIRA, J. G. B.; BARANA, A. C. Upflow anaerobic filter for pet food wastewater treatment. Semina: Ciências Exatas e Tecnológicas, Londrina, v. 38, n. 1, p. 55-62, 2017. DOI: 10.5433/1679-0375.2017v38n1p55.

RITMANN, B. E.; MCCARTY, P. L. Environmental biotechnology: principies and applications. New York: Mc Graw Hill Education, 2001.

SHEN, R.; ZHAO, L.; LU, J.;WATSON, J.; SI, B.; CHEN, X.; MENG, H.; YAO, Z.; FENG, J.; LIU, J. Treatment of recalcitrant wastewater and hydrogen production via microbial electrolysis cells. International Journal Agricultural and Biological Engineering, Beijing, v. 12, n. 5, p. 179-188, 2019. DOI: 10.25165/j.ijabe.20191205.5061.

SIDDIQUE, M. N. I.; WAHID, Z. A. Achievements and perspectives of anaerobic co-digestion: a review. Journaln of Cleaner Production, Oxford, v. 194, p. 359-371, 2018. DOI: 10.1016/j.jclepro.2018.05.155.

STOFFEL, F.; MOREIRA, A. S. S. Aplicação de micro e ultrafiltração no processamento de sucos de fruta: revisão. B. CEPPA, [S. l.], v. 31, n. 2, p. 321-336, 2013. DOI: 10.5380/cep.v31i2.34855.

VRIEZE, J.; HENNEBEL, T.; BOON, N.; VERSTRAETE, W. Methanosarcina: The rediscovered methanogen for heavy duty biomethanation. Bioresource Technology, New York, v. 112, p. 1-9, 2012. DOI: 10.1016/j.biortech.2012.02.079.

WIJAYA, A. S.; JARIYABOON, R.; REUNGSANG, A.; KONGJAN, P. Biochemical methane potential (BMP) of cattle manure, chicken manure, rice straw, and hornwort in mesophilic mono-digestion. International Journal of Integrated Engineering, [Malaysia], v. 12, n. 3, p. 1-8, 2020. DOI: 10.30880/ijie.2020.12.03.001.

XIAO, X.; SHI, W.; RUAN, W. Performance and microbial community structure of anaerobic membrane bioreactor for lipids-rich kitchen waste alurry treatment: mesophilic and thermophilic processes. Processes, Basel, v. 7, p. 879, 2019. DOI: 10.3390/pr7120879.

XU, N.; LIU, S.; XIN, F.; ZHOU, J.; JIA, H.; XU, J.; JIANG, M.; DONG, W. Biomethane production from lignocellulose: biomass recalcitrance and its impacts on anaerobic digestion. Frontiers in Bioengineering and Biotechnology, Lausanne, v. 7, art. 191, 2019. DOI: 10.3389/fbioe.2019.00191.

ZHANG, C.; XIAO, G.; PENG, L.; SU, H.; TAN, T. The anaerobic co-digestion of food waste and cattle manure. Bioresource Technology, New York, n. 129, p. 170-176, 2013. DOI: 10.1016/j.biortech.2012.10.138.

ZHANG, L.; LOH, K.; SARVANANTHARAJAH, S.; TONG, Y. W.; WANG, C.; DAI, Y. Mesophilic and thermophilic anaerobic digestion of soybean curd residue for methane production: characterizing bacterial and methanogen communities and their correlations with organic loading rate and operating temperature. Bioresource Technology, New York, v. 288, 2019. DOI: 10.1016/j.biortech.2019.121597.

Downloads

Published

2021-06-07

How to Cite

André, A. C. L., Barros, E. S. C., Silva, P. T. de S. e, Lourençoni, D., & Amorim, M. C. C. de. (2021). Anaerobic co-digestion of acerola (Malphigia emarginata) agro-industry effluent with domestic sewage at mesophilic and thermophilic conditions. Semina: Ciências Exatas E Tecnológicas, 42(1), 85–96. https://doi.org/10.5433/1679-0375.2021v42n1p85

Issue

Section

Original Article

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.

Loading...