Biochemical potential of methane of wastewater ultrafiltration in the processing of unriped green acerola (Malpighia emarginata)
DOI:
https://doi.org/10.5433/1679-0375.2020v41n2p135Keywords:
Agro-industry, Organic load, Malpighia emarginata, Methane, UltrafiltrationAbstract
Ultrafiltration clarifies fruit juices, in the food industry, but generates retentive, recalcitrant wastewater, which, by its organic nature, may present a potential for biodegradation and methane production. This study aimed to evaluate the biochemical methane potential (BMP) in wastewater from the processing of unripe green acerola, obtaining the mass balance and the speed of organic load removal in COD terms. The BMP assays followed the German Guidelines VDI 4630, by applying three COD loads per liter of reactor vial (0,86 g CDOAplied L-1R, 1,5 g CDOAplied L-1R e 2,0 g CDOAplied L-1R), , in batches, inoculated with the anaerobic sludge from reactors treating domestic sewage, at 30 0C. The pH, COD, and methane production were evaluated every 48 hours. The biodegradability and the decay rate constant of the COD (Kd) were determined, thus obtaining the methanized COD, the COD for the formation of new cells, and the COD present in the wastewater, in the form of volatile acids. The best BMP was 0.100 L CH4 g -1 CDORemoved, the percentages of methanization were above 62 %, and the highest Kd occurred for the lowest load applied. The anaerobic digestion of the wastewater proved viable for in full-scale, with its application being suggested at a pilot scale.
Downloads
References
AMORIM, S. M; KATO, M. T; FLORENCIO, L.; GAVAZZA, S. Influence of redox mediators and electron donors on the anaerobic removal of color and chemical oxygen demand from textile effluent. Clean – Soil, air, water, Brighton, v. 41, n. 9, p. 928-933, 2013. DOI: https://doi.org/10.1002/clen.201200070.
AMORIM, M. C. C.; SILVA, P. T. S.; BARBOSA, P. S.; MONTEFUSCO, N. E. Anaerobic biodegradation of cassava wastewater under different temperatures and inoculums. Comunicata Scientia, Piauí, v.10, n. 1, p. 65-76, 2019. DOI: https://doi.org/10.14295/cs.v10i1.3009.
AQUINO, S. F.; CHERNICHARO, C. A. Acúmulo de ácidos graxos voláteis (AGVs) em reatores anaeróbios sob estresse: causas e estratégias de controle. Engenharia Sanitária Ambiental, Rio de Janeiro, v. 10, n. 2, p. 152-161, 2005. DOI: https://doi.org/10.1590/S1413-41522005000200009.
AQUINO, S.; CHERNICHARO, C. A. L.; FORESTI, E.; SANTOS, M. L. F.; MONTEGGIA, L. O. Metodologias para determinação da Atividade Metanogênica Específica (AME) em lodos anaeróbios. Revista de Engenharia Sanitária e Ambiental, Rio de Janeiro, v. 12, n. 2, p. 192-201, 2007. DOI: https://doi.org/10.1590/S1413-41522007000200010.
BASTOS, G. R.; URBANO, V. R.; GODOY, F. K.; MATTOS, L. F. A.; SOUZA, C. F. COD and nutrient removal from urban effluent by Desmodesmus subspicatus. Semina: Ciências Exatas e Tecnológicas, Londrina, v. 40, n. 1, p. 87-93, 2019. DOI: https://doi.org/ 10.5433/1679-0375.2019v40n1p87.
BERTOLINO S. M.; CARVALHO, C. F.; AQUINO, S. F. Caracterização e biodegradabilidade aeróbia e anaeróbia dos esgotos produzidos em campus universitário. Engenharia Sanitária e Ambiental, Rio de Janeiro, v. 13, n. 3, p. 271-277, 2008. DOI: https://doi.org/10.1590/S1413-41522008000300005.
BRASIL, M. S.; MATOS, A. T.; SOARES, A. A. Plantio e desempenho fenológico da taboa (Thyphasp.) utilizada no tratamento de esgoto doméstico em sistema alagado construído. Engenharia Sanitária e Ambiental, Rio de Janeiro, v. 12, n. 3, p. 266-272, 2007, DOI: https://doi.org/10.1590/S14131522007000300006.
CAMPOS, C. M. M.; PRADO, M. A. C.; PEREIRA, E. L. Kinetic parameters of biomass growth in a UASB reactor treating wastewater from coffee wet processing (WCWP). Revista Ambiente e Água, Taubaté, v. 9, n. 4, p. 577-591, 2014. DOI: https://doi.org/10.4136/ambi-agua.1280.
CHEN, Y.; CHENG, J. J.; CREAMER, K. S. Inhibition of anaerobic digestion process: a review. Bioresources Technology, Índia, v. 99, p. 4044–4064, 2008. DOI: https://doi:10.1016/j.biortech.2007.01.057.
CHENG, D.; NGO, H. H.; GUO, W. S.; CHANG, S. W.; NGUYEN, D. D.; KUMAR, S. M. Microalgae biomass from swine wastewater and its conversion to bioenergy. Bioresource Technology, Índia, v. 275, p. 109-122, 2018. DOI: https: //doi10.1016/j.biortech.2018.12.019.
CORREIA, G. T.; DEL BIANCHII, V. L. Tratamento biológico de água residuária da produção de farinha de mandioca utilizando reator anaeróbico compartimentado vertical (RACOV). Semina: Ciências Exatas e Tecnológicas, Londrina, v. 29, n. 2, p. 159-166, 2008.
CORRÊA, C. V.; GOUVEIA, A. M. S.; MARTINS, B. N. M.; JORGE, L. G.; LANNA, N. DE B. L.; TAVARES, A. N. B.; MENDONÇA, V. Z.; EVANGELISTA, R. M. Influence of ripening stages on physico chemical characteristics of acerola fruits. Revista de Ciências Agrárias, Lisboa, v. 40, n. 4, p. 808-813, 2017. DOI: http://dx.doi.org/10.19084/RCA17116.
CREMONEZ, P. A.; TELEKEN, J. G.; FEIDEN, A.; ROSSI, E.; SOUZA, S. M.; TELEKEN, J.; DIETER, J.; ANTONELLI, J. Biodigestão anaeróbia de polímero orgânico de fécula de mandioca. Revista de Ciências Agrárias, Lisboa, v. 39, n. 1, p. 122-133, 2016. DOI: https://dx.doi.org/10.19084/RCA15028.
DEEPANRAJ, B.; SIVASUBRAMANIAN, V.; JAYARAJ, S. Experimental and kinetic study on anaerobic digestion of food waste: the effect of total solids and pH. Journal Renewable Sustainable Energy, San Diego, v. 7, n. 6, 2015. DOI: https://dx.doi.org/10.1063/1.4935559.
DECHRUGSA, S.; KANTACHOTE, D.; CHAIPRAPAT, S. Effects of inoculum to substrate ratio, substrate mix ratio and inoculum source on batch co-digestion of grass and pig manure. Bioresource Technology, Índia, v. 146, p. 101-108, 2013. DOI: https://dx.doi.org/10.1016/j.biortech.2013.07.051.
ELBESHBISHY, E.; NAKHLA, G. Batch anaerobic co-digestion of proteins and carbohydrates. Bioresource Technology, Índia, v. 116, p. 170-178, 2012. DOI: https://doi.org/10.1016/j.biortech.2012.04.052.
ESPOSITO, G.; FRUNZO, L.; LIOTTA, F.; PANICO, A.; PIROZZI, F. Bio-methane potential tests to measure the biogas production from the digestion and co-digestion of complex organic substrates. The Open Environmental Engineering Journal, Sharjah, v. 5, p. 1-8, 2012. DOI: https://doi.org/10.2174/1874829501205010001.
FAN, Y. V.; LEE, C. T.; KLEMES, J. J. The Update of anaerobic digestion and the environment impact assessments research. Chemical Engineering Transactions, Milano, v. 57, 2017. DOI: https://doi.org/10.3303/CET1757002.
GONZÁLEZ-SÁNCHEZ, M. E.; FABIEL, S. P.; VILARREAL, A. W.; MENDOZA, R. B.; OCAMPO, G. Y. Residuos agroindustriales com potencial para la produccion de metano mediante La digestion anaerobia. Revista Argentina de Microbiología, Buenos Aires, v. 47, n. 3, p. 229-235, 2015. DOI: http:// https://doi.org/10.1016/j.ram.2015.05.003.
GUERI, M. V. D.; SOUZA, S. N. M.; KUCZMAN, O.; SCHIRMER, W. N.; BURATTO, W. G.; RIBEIRO, C. B.; BESINELLA, G. B. Anaerobic digestion of the food waste using bmp assay. BIOFIX Scientific Journal, Curitiba, v. 3, n. 1, p. 8 – 16, 2018. DOI: https://dx.doi.org/10.5380/biofix.v3i1.55831.
HAGOS, K.; ZONG, J.; LI, D.; LIU, C.; LU, X. Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renewable and Sustainable Energy Reviews, United Kingdom, v. 76, p. 1485-1496, 2017. DOI: https://doi.org/10.1016/j.rser.2016.11.184.
IBGE - INSTITUTO BRASILERIO DE GEOGRAFIA E ESTATÍSTICA. Censo agropecuário: resultados definitivos 2017. Rio de Janeiro: IBGE, 2017. Disponível em: https://censos.ibge.gov.br/agro/2017/templates/censo_agro/resultadosagro/agricultura.html?localidade=0&tema=76215 Acesso em: 22 Jul. 2020.
ISIK, M.; SPONZA, D. T. Substrate removal kinetics in an upflow anaerobic sludge blanket reactor decolorising simulated textile wastewater. Process Biochemistry, Vandœuvre-lès-Nancy, v. 40, p.1189–1198, 2005. DOI: https://doi.org/10.1016/j.procbio.2004.04.014.
KHALIGH,S. S.; YAGCI, N.; COKGOR, E. U.; KARACA, C.; ALLI, B.; ORHON, D.; SÖZEN, S. Biodegradation of pretreated olive mill effluent In mixture with a domestic sewage or compatible wastewater stream. Journal Chemical Technol. Biotechnology, New York, v. 92, p. 757–766, 2017. DOI: https://doi.org/10.1002/jctb.5114.
KHAN, N.; ROES-HILL, M.; WELZ, P. J.; GRANDIN, K. A.; KUDANGA, T.; DYK, J. S. V.; OHLHOFF, C.; ZYL, W. H. E.; PLETSCHKE, B. I. Fruit waste streams in South Africa and their potential role in developing a bio-economy. South Africa Journal of Science, Pretoria, v. 111, n. 5/6, p. 1-11, 2015. DOI: https://doi.org/10.17159/sajs.2015/20140189.
KOUPAIE, E. H.; LEIVA, M.B.; ESKICIOGLU, C.; DUTIL, C. Mesophilic batch anaerobic co-digestion of fruit-juice industrial waste and municipal waste sludge: Process and cost-benefit analysis. Bioresource Technology, Índia, v. 152, p. 66-73, 2014. DOI: https://doi.org/10.1016/j.biortech.2013.10.072.
LEBON, E.; CAILLET, H.; AKINLABI, E.; MADYIRA, D.; ADELARD, L. Kinetic study of anaerobic co-digestion, analysis and modeling. Procedia Manufacturing, Michigan, v. 35, p. 321–326, 2019. DOI: https://doi.org/10.1016/j.promfg.2019.05.047.
LEIVA, M. B.; HOSSEINI KOUPAIE, E.; ESKICIOGLU, C. Anaerobic co-digestion of wine/fruit-juice production waste with landfill leachate diluted municipal sludge cake under semi-continuous flowoperation. Waste Management, New York, n. 34, p. 1860–1870, 2014. DOI: https://dx.doi.org/10.1016/j.wasman.2014.06.027.
LESTEUR, M.; BELLON-MAUREL, V.; GONZALEZ, C.; LATRILLE, E.; ROGER, J. M.; JUNQUA, G.; STEYER, J.P. Alternative methods for determining anaerobic biodegradability: a review. Process Biochemistry, Vandœuvre-lès-Nancy, v. 45, n. 4, p. 431-440, 2010. DOI: https://dx.doi.org/10.1016/j.procbio.2009.11.018.
LEW, B.; TARRE, S.; BELIAVSKI, M; UNRIPE, M. Anaerobic degradation pathway and kinetics of domestic wastewater at low temperatures. Bioresource Technology, v. 100, p. 6155–6162, 2009. DOI: https://doi.org/10.1016/j.biortech.2009.06.073.
LIMA, L. P.; FERREIRA, A. G.; VAZ, L. R. L.; ANDRADE, W. R.; FERREIRA, C. F. S. Método para seleção de sistemas de tratamento de efluentes em agroindústrias de micro e pequeno porte. Revista Engenharia na Agricultura, Viçosa, v. 26, n. 4, p. 334-342, 2018. DOI: https://doi.org/10.13083/reveng.v26i4.964.
MATANGUE, M. T. A.; CAMPOS, C. M. M. Determination of kinetic parameters of an upflow anaerobic sludge blanket reactor (UASB), treating swine wastewater. Ciência e Agrotecnologia, Lavras, v. 35, n. 6, p. 1204-1210, 2011. DOI: https://doi.org/10.1590/S1413-70542011000600022.
MATOS, A. T.; FREITAS, W. S.; BORGES, A. C. Dinâmica da remoção de matéria orgânica de águas residuárias da suíno cultura em sistemas alagados construídos cultivados com diferentes espécies vegetais. In: CONGRESSO BRASILEIRO DE ENGENHARIA AGRÍCOLA, 39., 2010, Vitória. Anais [...]. Jaboticabal: SBEA, 2010c. CD Rom.
METCALF, L.; EDDY, H. P.; TCHOBANOGLOUS, G.; BURTON, F. L; STENSEL, D. H. Wastewater engineering: treatment and resource recovery. 5. ed. New York: McGraw-Hill Book, 2016.
MONTALVO, S.; MARTINEZ, J.; CASTILLO, A.; HUILIÑIR, C.; BORJA, R.; GARCÍA, V.; SALAZAR, R. Sustainable energy for a winery through biogas production and its utilization: a chilean case study. Sustainable Energy Technologies and Assessments, United Kingdom, v. 37, 2020. DOI: https://doi.org/10.1016/j.seta.2020.100640.
MORAES, L. M.; PAULA JÚNIOR, D. R. Anaerobic biodegradability of wastewater from dairy and swine. Engenharia Agrícola, Jaboticabal, v. 24, n. 2, p. 445-454, 2004. DOI: https://doi.org/10.1590/S0100-69162004000200025.
PENTEADO, M. C.; SCHIRMER, W. N.; DOURADO, D. C.; GUERI, M. V. D. Análise do potencial de geração de biogás a partir da biodigestão anaeróbia da vinhaça e bagaço de cana. BIOFIX Scientific Journal, Curitiba, v. 3 n. 1 p. 26-33, 2018. DOI: https://dx.doi.org/10.5380/biofix.v3i1.56013.
NASCIMENTO FILHO, W. B; FRANCO, C. R. Avaliação do potencial dos resíduos produzidos através do processamento agroindustrial no Brasil. Revista Virtual de Química, Niterói, v. 7, n. 6, p. 1968-1987, 2015. DOI: https://doi.org/10.5935/1984-6835.20150116.
PENHA, E. M.; BRAGA, N. A. S.; MATTA, V. M.; CABRAL, L. M. C.; MODESTA, R. C. D.; FREITAS, S. C. Utilização do retentado da ultrafiltração do suco de acerola na elaboração de licor. B.CEPPA, Curitiba, v. 19, n. 2, p. 267-276, 2001.
PEREIRA, E. L.; CAMPOS, C. M. M.; MOTERANI, F. Avaliação do desempenho físico químico de um reator UASB construído em escala piloto na remoção de poluentes de efluentes de suinocultura. Revista Ambiente & Agua, Taubaté, v. 5, n. 1, p. 79-88, 2010. DOI: https://dx.doi.org/10.4136/ambi.agua.121.
RAJAGOPAL, R.; MASSÉ, D. I.; SINGH, G. A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour. Technol, Índia, v. 143, p. 632–641, 2013. DOI: https://doi.org/10.1016/j.biortech.2013.06.030.
RIBAS, M. M. F.; MORAES, E. M.; FORESTI, E. Avaliação da acurácia de diversos métodos para determinação de ácidos graxos voláteis e alcalinidade a bicarbonato para monitoramento de reatores anaeróbios. Engenharia Sanitária e Ambiental, Rio de Janeiro, v. 12, n. 3, p. 240-246. 2007. DOI: https://doi.org/10.1590/S1413-41522007000300002.
RODRÍGUEZ, A.; ÁNGEL, J.; RIVERO, E.; ACEVEDO, P.; SANTIS, A.; CABEZA, I.; ACOSTA, M.; HERNÁNDEZ, M. Evaluation of the biochemical methane potential of pig manure, organic fraction of municipal solid waste and cocoa industry residues in Colombia. Chemical Engineering Transactions, Milano, v. 57, 2017. DOI: https://doi.org/10.3303/CET1757010.
SAMADI, F.; MIRBAGHERI, S. A. Biogas producibility and kinetic evaluation of anaerobic rotating biological contactors. Water Environment, Surrey, 2019. DOI: https://doi.org/10.1111/wej.12486.
SANTOS FILHO, D. A.; OLIVEIRA, L. R.; SCHIRMER, W. N.; MOTTA SOBRINHO, M. A.; JUCÁ, J. F. T.; VASCONCELOS, T. L. The use of residual glycerin in the codigestion of organic residues from anaerobic biodigestion. BIOFIX Scientific Journal, Curitiba, v. 3, n. 2, p. 260-266, 2018. DOI: https://dx.doi.org/10.5380/biofix.v3i2.59938.
SGORLON, J. G.; RIZK, M. C.; BERGAMASCO, R.; TAVARES, C. R. G. Avaliação da DQO e da relação C/N obtidas no tratamento anaeróbio de resíduos fruti-hortículas. Acta Scientiarum. Technology, Maringá, v. 33, n. 4, p. 421-424, 2011. DOI: https://doi.org/ 10.4025/actascitechnol.v33i4.8259.
SHEN, R.; ZHAO, L; LU, J.; WATSON, J.; SI, B.; CHEN, XI; MENG, H.;YAO, Z.; FENG, J.; LIU, Z. Treatment of recalcitrant wastewater and hydrogen production via microbial electrolysis cells. International Journal Agriculture& Biology Engeneering, Beijing, v. 12, n. 5, p. 179-188, 2019. DOI: https://doi.org/10.25165/j.ijabe.20191205.5061.
SIDDIQUE, M. N. I.; WAHID, Z. A. Achievements and perspectives of anaerobic co-digestion: a review. Journal of Cleaner Production, New York, v. 194, p. 359-371, 2018. DOI: https://doi.org/10.1016/j.jclepro.2018.05.155.
SOUZA, G. R.; OLIVEIRA, L. F. C.; BELLO, I. P.; SINISCALCHI, L. A. B.; FIA, R.; GANDIA, R. M. Use of coffee capsules as support material in upflow anaerobic fixed bed reactors. Brazilian Archives of Biology and Technology, Curitiba, v. 62, 2019. DOI: https://dx.doi.org/10.1590/1678-4324-2019180504.
VAN, D. P.; MINH, G. H.; PHU, S. T. P.; FUJIWARA, T. A new kinetic model for biogas production from co-digestion by batch mode. Global J. Environ. Sci. Manage., Tehran, v. 4, n. 3, p. 251-262, 2018 DOI: https://doi.org/10.22034/gjesm.2018.03.001.
VEREIN DEUTSCHER INGENIEURE - VDI 4630. Fermentation of organic materials – characterization of the substrate, sampling, collection of material data, fermentation tests. Düsseldorf: The Association of German Engineers, 2016.
VELÁZQUEZ-MARTÍ, B.; MENESES-QUELAL, O. W.; GAIBOR-CHAVEZ, J.; NIÑO-RUIZ, Z. Review of mathematical models for the anaerobic digestion process. In: BANU, R.; KANNAH, Y. (ed.). Digestão anaeróbica. London: IntechOpen, 2018. p. 811-1724. DOI: https://dx.doi.org/10.5772/intechopen.80815.
VRIEZE, J.; HENNEBEL, T.; BOON, N.; VERSTRAETE, W. Methanosarcina: there discovered methanogen for heavy duty biomethanation. Bioresource Technology, Essex, v. 112, p. 1–9, 2012. DOI: https://doi.org/10.1016/j.biortech.2012.02.079.
ZERROUKI, S.; RIHANI, R.; BENTAHAR, F.; BELKACEMI, K. Anaerobic digestion of wastewater from the fruit juice industry: experiments and modeling. Water Science & Technology, London, v. 72, n. 1, p. 123-134, 2015. DOI: https://doi.org/10.2166/wst.2015.193.
WUN, W. L; CHUA, G. K.; CHIN, S. Y.; ZAINOL, N. Kinetic study of palm oil mill effluent (POME) treatment by actived sludge. Journal Chemical Engineering and Industrial Biotechnology, Malaysia, v. 5, n. 5, p. 48-56, 2019. DOI: https://doi.org/10.15282/JCEIB-V5-05.29/3/2019/5.5.
Downloads
Published
How to Cite
Issue
Section
License
The Copyright Declaration for articles published in this journal is the author’s right. Since manuscripts are published in an open access Journal, they are free to use, with their own attributions, in educational and non-commercial applications. The Journal has the right to make, in the original document, changes regarding linguistic norms, orthography, and grammar, with the purpose of ensuring the standard norms of the language and the credibility of the Journal. It will, however, respect the writing style of the authors. When necessary, conceptual changes, corrections, or suggestions will be forwarded to the authors. In such cases, the manuscript shall be subjected to a new evaluation after revision. Responsibility for the opinions expressed in the manuscripts lies entirely with the authors.
This journal is licensed with a license Creative Commons Attribution-NonCommercial 4.0 International.