Resistência a múltiplos antimicrobianos em Escherichia coli shigatoxigênica (STEC) isoladas de frangos de corte ao abate

Autores

DOI:

https://doi.org/10.5433/1679-0359.2021v42n6SUPL2p3813

Palavras-chave:

Escherichia coli, Frango, Multirresistência, STEC.

Resumo

Broiler chickens and derived products play an important role as a source of Shiga toxin–producing Escherichia coli (STEC) to humans. This pathotype is responsible for causing severe diarrhea episodes, which can progress to systemic complications. A rapid and accurate diagnosis of the disease, and early treatment of the infection with antimicrobials, can prevent its worsening. However, multidrug resistant strains can have potentially negative implications for treatment success. In this context, the aim of the present study was to isolate and identify multidrug-resistant STEC strains from broiler chickens and carcasses. Of 171 E. coli strains, isolated by conventional microbiological techniques and submitted to Polymerase Chain Reaction (PCR), for detection of stx1 and stx2 genes, 21,05% (36/171) were STEC pathotype, and most of them (66,67% - 24/36) carried both stx1 and eae genes. The multidrug resistance pattern was observed in 75% (27/36) of STEC strains. The presence of STEC in broiler chickens and carcasses reinforce that these sources may act as reservoirs of this pathotype. Multidrug-resistant bacteria contaminating animal products, represents a public health issue, due to the possibility of spread of multidrug-resistant determinants in the food chain and a higher risk of failure in human treatment when antimicrobials are needed. 

Métricas

Carregando Métricas ...

Biografia do Autor

Rodrigo Pacheco Ornellas, Universidade Federal Fluminense

Aluno do Programa de Pós-Graduação em Medicina Veterinária, Higiene Veterinária e Tecnologia de Processamento de Produtos de Origem Animal, Universidade Federal Fluminense, UFF, Niterói, RJ, Brasil.

Hugo Peralva Lopes, Universidade Federal Fluminense

Aluno de Doutorado do Programa de Pós-Graduação em Medicina Veterinária, Higiene Veterinária e Tecnologia de Processamento de Produtos de Origem Animal, UFF, Niterói, RJ, Brasil.

Daniela de Queiroz Baptista, Universidade Federal Fluminense

Aluna de Doutorado do Programa de Pós-Graduação em Medicina Veterinária, Higiene Veterinária e Tecnologia de Processamento de Produtos de Origem Animal, UFF, Niterói, RJ, Brasil.

Thomas Salles Dias, Universidade Federal Fluminense

Aluno de Doutorado do Programa de Pós-Graduação em Medicina Veterinária, Higiene Veterinária e Tecnologia de Processamento de Produtos de Origem Animal, UFF, Niterói, RJ, Brasil.

Arthur de Almeida Figueira, Universidade Federal Fluminense

Aluno do Programa de Pós-Graduação em Medicina Veterinária, Higiene Veterinária e Tecnologia de Processamento de Produtos de Origem Animal, Universidade Federal Fluminense, UFF, Niterói, RJ, Brasil.

Gisllany Alves Costa, Universidade Federal Fluminense

Aluna do Programa de Pós-Graduação em Medicina Veterinária, Higiene Veterinária e Tecnologia de Processamento de Produtos de Origem Animal, Universidade Federal Fluminense, UFF, Niterói, RJ, Brasil.

Leandro dos Santos Machado, Universidade Federal Fluminense

Pós-Doutorado do Programa de Pós-Graduação em Medicina Veterinária, Higiene Veterinária e Tecnologia de Processamento de Produtos de Origem Animal, UFF, Niterói, RJ, Brasil.

Nathalie Costa da Cunha, Universidade Federal Fluminense

Profa PhD, Departamento de Medicina Veterinária Preventiva, UFF, Niterói, RJ, Brasil.

Virginia Léo de Almeida Pereira, Universidade Federal Fluminense

Profa PhD, Departamento de Medicina Veterinária Preventiva, UFF, Niterói, RJ, Brasil.

Dayse Lima da Costa Abreu, Universidade Federal Fluminense

Profa PhD, Departamento de Medicina Veterinária Preventiva, UFF, Niterói, RJ, Brasil.

Referências

Alikhani, M. Y., Hashemi, S. H., Aslani, M. M., & Farajnia, S. (2013). Prevalence and antibiotic resistance patterns of diarrheagenic Escherichia coli isolated from adolescents and adults in Hamedan, Western Iran. Iranian Journal of Microbiology, 5(1), 42-47. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC3577554/

Alonso, M. Z., Lucchesi, P. M. A., Rodríguez, E. M., Parma, A. E., & Padola, N. L. (2012). Enteropathogenic ( EPEC ) and shigatoxigenic Escherichia coli (STEC) in broiler chickens and derived products at different retail stores. Food Control, 23(2), 351-355. doi: 10.1016/j.foodcont.2011.07.030

Andreatti, R. L., Fº., Gonçalves, G. A. M., Okamoto, A. S., & Lima, E. T. de. (2011). Comparação de métodos para extração de DNA na reação em cadeia da polimerase para detecção de Salmonella enterica sorovar Enteritidis em produtos avícolas. Ciência Animal Brasileira, 12(1), 115-119. doi: 10.5216/cab. v12i1.3774

Barros, M. R., Silveira, W. D. da, Araújo, J. M. de, Costa, E. P., Oliveira, A. A. da F., Santos, A. P. da S. F.,... Mota, R. A. (2012). Resistência antimicrobiana e perfil plasmidial de Escherichia coli isolada de frangos de corte e poedeiras comerciais no Estado de Pernambuco. Pesquisa Veterinária Brasileira, 32(5), 405-410. doi: 10.1590/S0100-736X2012000500008

Blaak, H., Hoek, A. H. A. M. Van, Hamidjaja, R. A., Plaats, R. Q. J. Van Der, Heer, L. K., Maria, A.,... Schets, F. M. (2015). Distribution , numbers , and diversity of ESBL- producing E . coli in the poultry farm environment. Plos One, 8(13), 1-23. doi: 10.1371/journal.pone.0135402

Brasil, M. da S. (2019). Surtos de doenças transmitidas por alimentos no Brasil. Brasília: Secretaria de Vigilância em Saúde. Retrieved from https://portalarquivos2.saude.gov.br/images/pdf/2019/fevereiro /15/Apresenta----o-Surtos-DTA---Fevereiro-2019.pdf

Clinical and Laboratory Standards Institute (2018). Performance standards for antimicrobial susceptibility testing, M100 performance standards for antimicrobial susceptibility testing (28nd ed.). Wayne: CLSI.

Doregiraee, F., Alebouyeh, M., Fasaei, B. N., Charkhkar, S., Tajedin, E., & Zali, M. R. (2016). Isolation of atypical enteropathogenic and shiga toxin encoding Escherichia coli strains from poultry in Tehran, Iran. Gastroenterology and Hepatology from Bed to Bench, 9(1), 53-57. doi: 10.22037/ghfbb.v1i9.866

El-Rami, F. E., Rahal, E. A., Sleiman, F. T., & Abdelnoor, A. M. (2012). Identification of virulence genes among antibacterial-resistant Escherichia coli isolated from poultry. Advanced Studies in Biology, 4(8), 385-396. Retrived from http://www.m-hikari.com/asb/asb2012/asb5-8-2012/abdelnoorASB5-8-2012. pdf

Ethelberg, S., Olsen, K. E. P., Scheutz, F., Jensen, C., Schiellerup, P., Engberg, J.,... Mølbak, K. (2004). Virulence factors for virulence factors for hemolytic uremic syndrome, Denmark. Emerging Infectious Diseases, 10(5), 843-847. doi: 10.3201/eid1005.030576

Fürst, S., Scheef, J., Bielaszewska, M., Rüssmann, H., Schmidt, H., & Karch, H. (2000). Identification and characterisation of Escherichia coli strains of O157 and non-O157 serogroups containing three distinct Shiga toxin genes. Journal of Medical Microbiology, 49(4), 383-386. doi: 10.1099/0022-1317-49-4-383

Geerdes-Fenge, H. F., Lobermann, M., Nrnberg, M., Fritzsche, C., Koball, S., Henschel, J.,... Reisinger, E. C. (2013). Ciprofloxacin reduces the risk of hemolytic uremic syndrome in patients with Escherichia coli O104 : H4-associated diarrhea. Infection, 2013(41), 669-673. doi: 10.1007/s15010-012-0387-6

Gobius, K. S., Higgs, G. M., & Desmarchelier, P. M. (2003). Presence of activatable shiga toxin genotype (stx 2d) in shiga toxigenic Escherichia coli from livestock sources. Journal of Clinical Microbiology, 41(8), 3777-3783. doi: 10.1128/JCM.41.8.3777

Granados-Chinchilla, F., & Rodríguez, C. (2017). Tetracyclines in food and feedingstuffs: from regulation to analytical methods, bacterial resistance, and environmental and health implications. Journal of Analytical Methods in Chemistry, 2017(1), 1-24. doi: 10.1155/2017/1315497

Hannah, G., Bopp, C., Strockbine, N., Atkinson, R., Baselski, V., Body, B.,... Gerner-Smidt, P. (2009). Recommendations for diagnosis of shiga toxin-producing Escherichia coli infections by clinical laboratories. Centers for Disease Control and Prevention, 58(RR12);1-14. Retrieved from https://www. cdc.gov/mmwr/preview/mmwrhtml/rr5812a1.htm

Jafari, F., Hamidian, M., Rezadehbashi, M., Doyle, M., Salmanzadeh-ahrabi, S., Derakhshan, F., & Zali, M. R. (2009). Prevalence and antimicrobial resistance of diarrheagenic Escherichia coli and Shigella species associated with acute diarrhea in Tehran, Iran. Canadian Journal of Infectious Diseases and Medical Microbiology, 20(3), e56-e62. doi: 10.1155/2009/341275

Krumperman, P. H. (1983). Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of faecal contamination of water. Environmental Science and Pollution Research, 22(14), 10969-10980. doi: 10.1007/s11356-014-3887-3

MacFaddin, J. F. (2000). Biochemical tests for identification of medical bacteria (3nd ed.). Baltimore (Md.): Williams and Wilkins.

Magiorakos, A., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G.,... Hindler, J. F. (2011). bacteria : an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268-281. doi: 10.1111/j.1469-0691.2011.03570.x

Matussek, A., Jernberg, C., Einemo, I., Monecke, S., & Ehricht, R. (2017). Genetic makeup of Shiga toxin-producing Escherichia coli in relation to clinical symptoms and duration of shedding: a microarray analysis of isolates from Swedish children. European Journal of Clinical Microbiology and Infectious Diseases, 2017(36), 1433-1441. doi: 10.1007/s10096-017-2950-7

Momtaz, H., & Jamshidi, A. (2011). Shiga toxin-producing Escherichia coli isolated from chicken meat in Iran: serogroups, virulence factors , and antimicrobial resistance properties. Poultry Science, 92(5), 1305-1313. doi: 10.3382/ps.2012-02542

Osundiya, O., Oladele, R., & Oduyebo, O. (2013). Multiple antibiotic resistance (MAR) indices of Pseudomonas and Klebsiella species isolates in Lagos University Teaching Hospital. African Journal of Clinical and Experimental Microbiology, 14(3), 164-168. doi: 10.4314/ajcem.v14i3.8

Paton, A. W., & Paton, J. C. (1998). Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA, enterohemorrhagic E. coli hlyA, rfbO111, and rfbO157. Journal of Clinical Microbiology, 36(2), 598-602. doi: 10.1128/JCM.36.2.598-602.1998

Pèrez-Cruz, F. G., Villa-Díaz, P., Pintado-Delgado, M. C., Fernández Rodriguez, M. L., Blasco-Martínez, A., & Pérez-Fernández, M. (2017). Hemolytic uremic syndrome in adults: a case report Fabiel. World Journal of Critical Care Medicine, 3141(2), 135-139. doi: 10.5492/wjccm.v6.i2.135

Persson, S., Olsen, K. E. P., Ethelberg, S., & Scheutz, F. (2007). Subtyping method for Escherichia coli Shiga toxin (Verocytotoxin) 2 variants and correlations to clinical manifestations. Journal of Clinical Microbiology, 45(6), 2020-2024. doi: 10.1128/JCM.02591-06

Ranjbar, R., Masoudimanesh, M., Dehkordi, F. S., & Jonaidi-Jafari, N. (2017). Shiga (Vero) - toxin producing Escherichia coli isolated from the hospital foods; virulence factors, o-serogroups and antimicrobial resistance properties. Antimicrobial Resistance & Infection Control, 2017(6:4), 1-11. doi: 10.1186/s13756-016-0163-y

Runa, J. A., Lijon, M. B., & Rahman, M. A. (2018). Detection of multidrug resistant and shiga toxin producing Escherichia coli (STEC ) from apparently healthy broilers in Jessore, Bangladesh. Frontiers in Environmental Microbiology, 4(1), 16-21. doi: 10.11648/j.fem.20180401.13

Verraes, C., Van Boxstael, S., Van Meervenne, E., Van Coillie, E., Butaye, P., Catry, B.,... Herman, L. (2013). Antimicrobial resistance in the food chain: a review. International Journal of Environmental Research and Public Health, 10(7), 2643-2669. doi: 10.3390/ijerph10072643

Downloads

Publicado

2021-10-08

Como Citar

Ornellas, R. P., Lopes, H. P., Baptista, D. de Q., Dias, T. S., Figueira, A. de A., Costa, G. A., Machado, L. dos S., Cunha, N. C. da, Pereira, V. L. de A., & Abreu, D. L. da C. (2021). Resistência a múltiplos antimicrobianos em Escherichia coli shigatoxigênica (STEC) isoladas de frangos de corte ao abate. Semina: Ciências Agrárias, 42(6SUPL2), 3813–3824. https://doi.org/10.5433/1679-0359.2021v42n6SUPL2p3813

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)