Efficiency evaluation of a novel orally administered subunit vaccine to reduce the prevalence of Salmonella enterica in swine under field conditions
DOI:
https://doi.org/10.5433/1679-0359.2023v44n6p2079Keywords:
Salmonella, Field trial, Vaccine, Swine, Subunit vaccine, Phagocytic monocytes., 05m).Abstract
Salmonella enterica can be carried by pigs and can reach the final product and the consumer. Thus, Salmonella reduction strategies along the swine production chain should be studied. In this sense, the objective of the study was to evaluate a subunit vaccine based on secondary antigens administered orally against natural infection in swine farms in Brazil. A field trial study was conducted to estimate the effect of the vaccination on the Salmonella spp. seroprevalence, presence in lymph nodes, and fecal content in commercial pig herds in a vertical integration system belonging to an agroindustry. Furthermore, nMPN, qPCR, and phagocytic activity were performed. There were no significant differences in seroprevalence between groups. The mMPN count of Salmonella spp. in feces was higher in vaccinated group (VG), ranging from 0 to 2.46 log mMPN/g, while in control group (CG) it ranged from 0.0 to 4 log mMPN/g, showing a significant group effect (p<0.05), being confirmed in the qPCR. The activity of phagocytic monocytes was not altered by vaccination on farms. Thus, the oral subunit vaccination strategy at this stage of development did not reduce the spread and amplification of the infection in farms that would impact the prevalence of pigs carrying and shedding Salmonella spp. until slaughter.
Downloads
References
Alban, L., Stege, H., & Dahl, J. (2002). The new classification system for slaughter-pig herds in the Danish Salmonella surveillance-and-control program. Preventive Veterinary Medicine, 53(1-2), 133-146. doi: 10.1016/s0167-5877(01)00270-7 DOI: https://doi.org/10.1016/S0167-5877(01)00270-7
Bearson, B. L., Bearson, S. M. D., & Kich, J. D. (2016). A DIVA vaccine for cross-protection against Salmonella. Vaccine, 34(10), 1241-1246. doi: 10.1016/j.vaccine.2016.01.036 DOI: https://doi.org/10.1016/j.vaccine.2016.01.036
Berends, B. R., Urlings, H. A., Snijders, J. M., & Van Knapen, F. (1996). Identification and quantification of risk factors in animal management and transport regarding Salmonella spp. in pigs. International Journal of Food Microbiology, 30(1-2), 37-53. doi: 10.1016/0168-1605(96)00990-7 DOI: https://doi.org/10.1016/0168-1605(96)00990-7
Bersot, L. D. S., Cavicchioli, V. Q., Viana, C., Burin, R. C. K., Camargo, A. C., Pinto, J. P. de A. N., Nero, L. A., & Destro, M. T. (2019). Prevalence, antimicrobial resistance, and diversity of Salmonella along the pig production chain in Southern Brazil. Pathogens, 8(204), 1-10. doi: 10.3390/pathogens8040204 DOI: https://doi.org/10.3390/pathogens8040204
Bonardi, S. (2017). Salmonella in the pork production chain and its impact on human health in the European Union. Epidemiology and Infection, 145(8), 1513-1526. doi: 10.1017/S095026881700036X DOI: https://doi.org/10.1017/S095026881700036X
Boyen, F., Haesebrouck, F., Maes, D., Van Immerseel, F., Ducatelle, R., & Pasmans, F. (2008). Non-typhoidal Salmonella infections in pigs: a closer look at epidemiology, pathogenesis and control. Veterinary Microbiology, 130(1-2), 1-19. doi: 10.1016/j.vetmic.2007.12.017 DOI: https://doi.org/10.1016/j.vetmic.2007.12.017
Brunelle, B. W., Bearson, S. M. D., & Bearson, B. L. (2011). Salmonella enterica serovar Typhimurium DT104 invasion is not enhanced by sub-inhibitory concentrations of the antibiotic florfenicol. Journal of Veterinary Science & Technology, 2(1), 1-4. doi: 10.4172/2157-7579.1000104 DOI: https://doi.org/10.4172/2157-7579.1000104
Classen, A., Lloberas, J., & Celada, A. (2009). Macrophage activation: classical versus alternative. Methods in Molecular Biology, 531(1), 29-43. doi: 10.1007/978-1-59745-396-7_3 DOI: https://doi.org/10.1007/978-1-59745-396-7_3
Costa, E. F., Kich, J. D., Miele, M., Morés, N., Amaral, A., Coldebella, A., Cardoso, M., & Corbellini, L. G. (2020). Evaluation of two strategies for reducing the spread of Salmonella in commercial swine herds during the finishing phase and their incremental cost-effectiveness ratios. Semina: Ciencias Agrarias, 41(2), 505-516. doi: 10.5433/1679-0359.2020v41n2p505 DOI: https://doi.org/10.5433/1679-0359.2020v41n2p505
Cruz, M. L. de la, Conrado, I., Nault, A., Perez, A., Dominguez, L., & Alvarez, J. (2017). Vaccination as a control strategy against Salmonella infection in pigs: a systematic review and meta-analysis of the literature. Research in Veterinary Science, 114(1), 86-94. doi: 10.1016/j.rvsc.2017.03.005 DOI: https://doi.org/10.1016/j.rvsc.2017.03.005
European Food Safety Authority (2019). The European Union one health 2018 zoonoses report. EFSA Journal, 17(12), 1-276. doi: 10.2903/j.efsa.2019.5926 DOI: https://doi.org/10.2903/j.efsa.2019.5926
Eze, M. O., Yuan, L., Crawford, R. M., Paranavitana, C. M., Hadfield, T. L., Bhattacharjee, A. K., Warren, R. L., & Hoover, D. L. (2000). Effects of opsonization and gamma interferon on growth of Brucella melitensis 16M in mouse peritoneal macrophages in vitro. Infection and Immunity, 68(1), 257-263. doi: 10.1128/IAI.68.1.257-263.2000 DOI: https://doi.org/10.1128/IAI.68.1.257-263.2000
Gil, C., Latasa, C., García-Ona, E., Lázaro, I., Labairu, J., Echeverz, M., Burgui, S., García, B., Lasa, I., & Solano, C. (2020). A DIVA vaccine strain lacking RpoS and the secondary messenger c-di-GMP for protection against salmonellosis in pigs. Veterinary Research, 51(3), 1-10. doi: 10.1186/s13567-019-0730-3 DOI: https://doi.org/10.1186/s13567-019-0730-3
Griffith, R. W., Carlson, S. A., & Krull, A. C. (2019). Salmonellosis. In J. J. Zimmerman, L.A. Karriker, A. Ramirez, K. J. Schwartz, G. W, Stevenson, J, Zhang (Eds.), Diseases of swine (pp. 912-925). Hoboken NL, USA. DOI: https://doi.org/10.1002/9781119350927.ch59
Haesebrouck, F., Pasmans, F., Chiers, K., Maes, D., Ducatelle, R., & Decostere, A. (2004). Efficacy of vaccines against bacterial diseases in swine: What can we expect? Veterinary Microbiology, 100(3-4), 255-268. doi: 10.1016/j.vetmic.2004.03.002 DOI: https://doi.org/10.1016/j.vetmic.2004.03.002
International Organization for Standardization - ISO. (2007). Microbiology of food and animal feeding stuffs: Horizontal method for the detection of Salmonella spp. Amendment 1: anex D: detection of Salmonella spp. in animal faeces and in environmental samples from the primary production stage. 4. ed. Geneva: ISO. 38 p.
Jarvis, B., Wilrich, C., & Wilrich, P. T. (2010). Reconsideration of the derivation of most probable numbers, their standard deviations, confidence bounds and rarity values. Journal of Applied Microbiology, 109(5), 1660-1667. doi: 10.1111/j.1365-2672.2010.04792.x DOI: https://doi.org/10.1111/j.1365-2672.2010.04792.x
Jiang, L., Wang, P., Song, X., Zhang, H., Ma, S., Wang, J., Li, W., Lv, R., Liu, X., Ma, S., Yan, J., Zhou, H., Huang, D., Cheng, Z., Yang, C., Feng, L., & Wang, L. (2021). Salmonella Typhimurium reprograms macrophage metabolism via T3SS effector SopE2 to promote intracellular replication and virulence. Nature Communications, 12(1), 1-18. doi: 10.1038/s41467-021-21186-4 DOI: https://doi.org/10.1038/s41467-021-21186-4
Kich, J. D., Coldebella, A., Morés, N., Nogueira, M. G., Cardoso, M., Fratamico, P. M., Call, J. E., Fedorka-Cray, P., & Luchansky, J. B. (2011). Prevalence, distribution, and molecular characterization of Salmonella recovered from swine finishing herds and a slaughter facility in Santa Catarina, Brazil. International Journal of Food Microbiology, 151(3), 307-313. doi: 10.1016/j.ijfoodmicro.2011.09.024 DOI: https://doi.org/10.1016/j.ijfoodmicro.2011.09.024
Kich, J. D., Souza, A. I. A., Montes, J., Meneguzzi, M., Costa, E. F., Coldebella, A., Corbellini, L. G., & Cardoso, M. (2020). Investigation of Listeria monocytogenes, Salmonella enterica and Yersinia enterocolitica in pig carcasses in Southern Brazil. Pesquisa Veterinária Brasileira, 40(10), 781-790. doi: 10.1590/1678-5150-pvb-6628 DOI: https://doi.org/10.1590/1678-5150-pvb-6628
Kranker, S., Alban, L., Boes, J., & Dahl, J. (2003). Longitudinal study of Salmonella enterica serotype Typhimurium infection in three Danish farrow-to-finish swine herds. Journal of Clinical Microbiology, 41(6), 2282-2288. doi: 10.1128/JCM.41.6.2282-2288.2003 DOI: https://doi.org/10.1128/JCM.41.6.2282-2288.2003
Letellier, A., Beauchamp, G., Guévremont, E., D'Allaire, S., Hurnik, D., & Quessy, S. (2009). Risk factors at slaughter associated with presence of Salmonella on hog carcasses in Canada. Journal of Food Protection, 72(11), 2326-2331. doi: 10.4315/0362-028x-72.11.2326 DOI: https://doi.org/10.4315/0362-028X-72.11.2326
Li, Q., Ren, J., Xian, H., Yin, C., Yuan, Y., Li, Y., Ji, R., Chu, C., Qiao, Z., & Jiao, X. (2020). rOmpF and OMVs as efficient subunit vaccines against Salmonella enterica serovar Enteritidis infections in poultry farms. Vaccine, 38(45), 7094-7099. doi: 10.1016/j.vaccine.2020.08.074 DOI: https://doi.org/10.1016/j.vaccine.2020.08.074
Liang, K. Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73(1), 13-22. doi: 10.1093/biomet/73.1.13 DOI: https://doi.org/10.1093/biomet/73.1.13
Mainar-Jaime, R. C., Casanova-Higes, A., Andrés-Barranco, S., & Vico, J. P. (2017). Revisiting the role of pig serology in the context of Salmonella control programs in countries with high prevalence of infection - a preliminary study. Proceeding of the International Symposium on the Epidemiology and Control of Biological, Chemical and Physical Hazards in Pigs and Pork, Foz do Iguaçú, Paraná, Brazil, 12. DOI: https://doi.org/10.31274/safepork-180809-353
Martinez-Becerra, F. J., Kumar, P., Vishwakarma, V., Kim, J. H., Arizmendi, O., Middaugh, C. R., Picking, W. D., & Picking, W. L. (2018). Characterization and protective efficacy of type III secretion proteins as a broadly protective subunit vaccine against Salmonella enterica serotypes. Infection and Immunity, 86(3), e00473-17. doi: 10.1128/IAI.00473-17 DOI: https://doi.org/10.1128/IAI.00473-17
Meneguzzi, M., Pissetti, C., Rebelatto, R., Trachsel, J., Kuchiishi, S. S., Reis, A. T., Guedes, R. M. C., Leão, J. A., Reichen, C., & Kich, J. D. (2021). Re-emergence of Salmonellosis in hog farms: outbreak and bacteriological characterization. Microorganisms, 9(5), 1-15. doi: 10.3390/microorganisms9050947 DOI: https://doi.org/10.3390/microorganisms9050947
Ofer Fridman (2021). Most Probable Number (MPN). https://www.mathworks.com/matlabcentral/fileexchange/22545-most-probable-number-mpn, MATLAB Central File Exchange.
Ogra, P. L., Faden, H., & Welliver, R. C. (2001). Vaccination strategies for mucosal immune responses. Clinical Microbiology Reviews, 14(2), 430-445. doi: 10.1128/CMR.14.2.430-445.2001 DOI: https://doi.org/10.1128/CMR.14.2.430-445.2001
Paim, D. S., Pissetti, C., Vieira, T. R., Werlang, G. O., Costa, E. F., Kich, J. D., & Cardoso, M. (2019). Enumeration, antimicrobial resistance and typing of salmonella enterica: Profile of strains carried in the intestinal contents of pigs at slaughter in Southern Brazil. Acta Scientiae Veterinariae, 47(1), 1-11. doi: 10.22456/1679-9216.89668 DOI: https://doi.org/10.22456/1679-9216.89668
Peeters, L., Dewulf, J., Boyen, F., Brossé, C., Vandersmissen, T., Rasschaert, G., Heyndrickx, M., Cargnel, M., Pasmans, F., & Maes, D. (2019). Effects of attenuated vaccine protocols against Salmonella Typhimurium on Salmonella serology in subclinically infected pig herds. Veterinary Journal, 249(1), 67-72. doi: 10.1016/j.tvjl.2019.05.008 DOI: https://doi.org/10.1016/j.tvjl.2019.05.008
Peeters, L., Dewulf, J., Boyen, F., Brossé, C., Vandersmissen, T., Rasschaert, G., Heyndrickx, M., Cargnel, M., Mattheus, W., Pasmans, F., Haesebrouck, F., & Maes, D. (2020). Evaluation of group vaccination of sows and gilts against Salmonella Typhimurium with an attenuated vaccine in subclinically infected pig herds. Preventive Veterinary Medicine, 182(1), 1-9. doi: 10.1016/j.prevetmed.2020.104884 DOI: https://doi.org/10.1016/j.prevetmed.2020.104884
Roesler, U., Heller, P., Waldmann, K.-H., Truyen, U., & Hensel, A. (2006). Immunization of sows in an integrated pig-breeding herd using a homologous inactivated Salmonella vaccine decreases the prevalence of Salmonella typhimurium infection in the offspring. Journal of Veterinary Medicine, 53(5), 224-228. doi: 10.1111/j.1439-0450.2006.00951.x DOI: https://doi.org/10.1111/j.1439-0450.2006.00951.x
Schwarz, P., Kich, J. D., Kolb, J., & Cardoso, M. (2011). Use of an avirulent live Salmonella Choleraesuis vaccine to reduce the prevalence of Salmonella carrier pigs at slaughter. Veterinary Record, 169(21), 1-4. doi: 10.1136/vr.d5510 DOI: https://doi.org/10.1136/vr.d5510
Silva, L. E., Gotardi, C. P., Vizzotto, R., Kich, J. D., & Cardoso, M. R. I. (2006). Infecção por Salmonella enterica em suínos criados em um sistema integrado de produção do sul do Brasil. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 58(4), 455-461. doi: 10.1590/S0102-09352006000400001 DOI: https://doi.org/10.1590/S0102-09352006000400001
Neto, W. S., Leotti, V. B., Pires, S. M., Hald, T., & Corbellini, L. G. (2021). Non-typhoidal human salmonellosis in Rio Grande do Sul, Brazil: a combined source attribution study of microbial subtyping and outbreak data. International Journal of Food Microbiology, 338(1), 1-10. doi: 10.1016/j.ijfoodmicro.2020.108992 DOI: https://doi.org/10.1016/j.ijfoodmicro.2020.108992
Statistical Analysis System (2012). SAS users guide: statistics. SAS Institute Inc.
Vico, J. P., & Mainar-Jaime, R. C. (2011). The use of meat juice or blood serum for the diagnosis of Salmonella infection in pigs and its possible implications on Salmonella control programs. Journal of Veterinary Diagnostic Investigation, 23(3), 528-531. doi: 10.1177/1040638711403432 DOI: https://doi.org/10.1177/1040638711403432
Wales, A. D., & Davies, R. H. (2017). Salmonella vaccination in pigs: a review. Zoonoses and Public Health, 64(1), 1-13. doi: 10.1111/zph.12256 DOI: https://doi.org/10.1111/zph.12256
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Semina: Ciências Agrárias
![Creative Commons License](http://i.creativecommons.org/l/by-nc/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.