Performance of tomato grown under different water replacement depths and silicon application forms

Authors

DOI:

https://doi.org/10.5433/1679-0359.2023v44n6p2147

Keywords:

Beneficial element, Irrigation, Solanum lycopersicum L.

Abstract

Water management has a direct impact on plant development, and under deficit conditions, it often results in reduced yields. Silicon (Si), however, has the potential to alleviate stress and enhance plant performance under unfavorable conditions. This study aimed to analyze the performance of tomato plants cultivated under different water replacement depths and forms of silicon application. The experiment was laid out in a completely randomized design with a 2 × 4 factorial arrangement represented by two water replacement depths (60% and 100% of crop evapotranspiration - ETc) and four forms of silicon application (without application, soil application - full dose, soil application - split dose, and foliar applications). Four replications were used. The plants were cultivated in a protected environment using drip irrigation for water replacement, and silicon oxide served as the source of the element. The analyzed parameters included daily evapotranspiration, leaf spectral reflectance, mass accumulation (root, stem, and leaf), yield indices (fruit weight, plant yield, and defective fruits), water productivity, and post-harvest fruit weight loss. The imposition of water deficit (60% of ETc) in tomato leads to reduced crop development and yield, with the effects partially mitigated by the application of silicon. Conversely, under conditions of adequate water replacement (100% of ETc), silicon application contributes to increased development and yield of tomato. The application of silicon in the soil, whether in a full or split dose, demonstrates a more favorable response in vegetative indices and yield for tomato.

Author Biographies

Gustavo Soares Wenneck, Universidade Estadual de Maringá

Doctorate Student of the Graduate Program in Agronomy, Universidade Estadual de Maringá, UEM, Maringá, PR, Brazil.

Reni Saath, Universidade Estadual de Maringá

Prof. Dr., Departament of Agronomy, UEM, Maringá, PR, Brazil.

Roberto Rezende, Universidade Estadual de Maringá

Prof. Dr., Departament of Agronomy, UEM, Maringá, PR, Brazil.

Daniele de Souza Terassi, Universidade Estadual de Maringá

Doctorate Student of the Graduate Program in Agronomy, Universidade Estadual de Maringá, UEM, Maringá, PR, Brazil.

Vinicius Villa e Vila, Universidade de São Paulo

Doctorate Student of Agricultural Systems Engineering Graduate Program, Universdade de São Paulo, ESALQ-USP, Piracicaba, SP, Brazil.

Karym Mayara de Oliveira, Universidade Estadual de Maringá

Doctorate Student of the Graduate Program in Agronomy, Universidade Estadual de Maringá, UEM, Maringá, PR, Brazil.

Adriana Lima Moro, Universidade do Oeste Paulista

Profa. Dra., Department of Agronomy, Universidade do Oeste Paulista, UNOESTE, Presidente Prudente, SP, Brazil.

Paulo Sérgio Lourenço de Freitas, Universidade Estadual de Maringá

Prof. Dr., Departament of Agronomy, UEM, Maringá, PR, Brazil.

References

Aires, E. S., Ferraz, A. K. L., Carvalho, B. L., Teixeira, F. P., Putti, F. F., Souza, E. P., Rodrigues, J. D., & Ono, E. O. (2022). Foliar application of salicylic acid to mitigate water stress in tomato. Plants, 11(13), 1775. doi: 10.3390/plants11131775 DOI: https://doi.org/10.3390/plants11131775

Andrean, A. F. B. A., Rezende, R., Wenneck, G. S., Vila, V. V. E., & Terassi, D. S. (2022). Water requirements and fruit development rate of cantaloupe melons cultivated in summer-autumn. Comunicata Scientiae, 13(1), 3879. doi: 10.14295/cs.v13.3879 DOI: https://doi.org/10.14295/cs.v13.3879

Boshkovski, B., Tzerakis, C., Doupis, G., Zapolska, A., Kalaitzidis, C., & Koubouris, G. (2020). Relationships of spectral reflectance with plant tissue mineral elements of common bean (Phaseolus vulgaris L.) under drought and salinity stresses. Communications in Soil Science and Plant Analysis, 51(5), 675-686. doi: 10.1080/00103624.2020.1729789 DOI: https://doi.org/10.1080/00103624.2020.1729789

Chakma, R., Saekong, P., Biswas, A., Ullah, H., & Datta, A. (2021). Growth, fruit yield, quality, and water productivity of grape tomato as affected by seed priming and soil application of silicon under drought stress. Agricultural Water Management, 256(1), 107055. doi: 10.1016/j.agwat.2021.107055 DOI: https://doi.org/10.1016/j.agwat.2021.107055

Chaudhary, P., Sharma, A., Singh, B., & Nagpal, A. K. (2018). Bioactivities of phytochemicals present in tomato. Journal of Food Science and Technology, 55(1), 2833-2849. doi: 10.1007/s13197-018-3221-z DOI: https://doi.org/10.1007/s13197-018-3221-z

Chen, D., Wang, S., Yin, L., & Deng, X. (2018). How does silicon mediate plant water uptake and loss under water deficiency? Frontiers in Plant Science, 9(1), 281. doi: 10.3389/fpls.2018.00281 DOI: https://doi.org/10.3389/fpls.2018.00281

Costan, A., Stamatakis, A., Chrysargyris, A., Petropoulos, S. A., & Tzortzakis, N. (2019). Interactive effects of salinity and silicon application on Solanum lycopersicum growth, physiology and shelf-life of fruit produced hydroponically. Journal of the Science of Food and Agriculture, 100(2), 732-743. doi: 10. 1002/jsfa.10076 DOI: https://doi.org/10.1002/jsfa.10076

Ferreira, D. F. (2019). SISVAR: a computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, 37(4), 529-535. doi: 10.28951/rbb.v37i4.450 DOI: https://doi.org/10.28951/rbb.v37i4.450

Hachmann, T. L., Rezende, R., Pintro, P. T. M., Saath, R., Anjo, F. A., & Menezes, C. S. L. (2019). Yield, antioxidant activity and shelf-life of cauliflower inflorescences under drought stress and foliar spraying of selenium. Ciência e Agrotecnologia, 43(1), 017819. doi: 10.1590/1413-7054201943017819 DOI: https://doi.org/10.1590/1413-7054201943017819

Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). Paleontological statistics software package for education and data analyses. Palaeontologia Electronica, 4(9), 1-9.

Hoffmann, J., Berni, R., Hausman, J. F., & Guerriero, G. (2020). A review on the beneficial role of silicon against salinity in non-accumulator crops: tomato as a model. Biomolecules, 10(9), 1284. doi: 10.3390/biom10091284 DOI: https://doi.org/10.3390/biom10091284

Ihuoma, S. O., & Madramootoo, C. A. (2019). Sensitivity of spectral vegetation indices for monitoring water stress in tomato plants. Computers and Electronics in Agriculture, 163(1), 104860. doi: 10.1016/j.compag.2019.104860 DOI: https://doi.org/10.1016/j.compag.2019.104860

Khan, A., Kamran, M., Imran, M., Al-Harrasi, A., Al-Rawahi, A., Al-Amri, I., Lee, I. J., & Khan, A. L. (2019). Silicon and salicylic acid confer high-pH stress tolerance in tomato seedlings. Scientific Reports, 9(1), 19788. doi: 10.1038/s41598-019-55651-4 DOI: https://doi.org/10.1038/s41598-019-55651-4

Lozano, C. S., Rezende, R., Hachmann, T. L., Santos, F. A. S., Lorenzoni, M. Z., & Souza, Á. H. C. (2018). Produtividade e qualidade de melão sob doses de silício e lâminas de irrigação em ambiente protegido. Pesquisa Agropecuária Tropical, 48(2), 140-146. doi: 10.1590/1983-40632018v4851265 DOI: https://doi.org/10.1590/1983-40632018v4851265

Moraes, D. H. M., Mesquita, M., Bueno, A. M., Flores, R. A., Oliveira, H. F. E., Lima, F. S. R., Prado, R. M., & Battisti, R. (2020). Combined effects of induced water deficit and foliar application of silicon on the gas exchange of tomatoes for processing. Agronomy, 10(11), 1715. doi: 10.3390/agronomy10111715 DOI: https://doi.org/10.3390/agronomy10111715

Mourelli, W. A. (2008). Tensiômetros para o controle de irrigação em hortaliças. (Circular Técnica, 57). EMBRAPA Hortaliças.

Nemeskéri, E., & Helyes, L. (2019). Physiological responses of selected vegetable crop species to water stress. Agronomy, 9(8), 447. doi: 10.3390/agronomy9080447 DOI: https://doi.org/10.3390/agronomy9080447

Nocchi, R. C. F., Wenneck, G. S., Rezende, R., Furlani, E., Jr., Vila, V. V., Vieira, N. C. S., Paixão, A. P., & Saath, R. (2021). Cotton fiber quality affected by water availability and silicon application. Colloquium Agrariae, 17(6), 80-86. doi: 10.5747/ca.2021.v17.n6.a472 DOI: https://doi.org/10.5747/ca.2021.v17.n6.a472

Parkash, V., & Singh, S. (2020). A review on potential plant-based water stress indicators for vegetable crops. Sustainability, 12(10), 3945. doi: 10.3390/su12103945 DOI: https://doi.org/10.3390/su12103945

Pauletti, V., & Motta, A. C. V. (2019). Manual de adubação e calagem para o Estado do Paraná (2a ed.). SBCS-NEPAR.

Rastogi, A., Tripathi, D. K., Yadav, S., Chauhan, D. K., Zivcak, M., Ghorbanpour, M., El-Sheery, N. I., & Brestic, M. (2019). Application of silicon nanoparticles in agriculture. 3 Biotech, 9(1), 1-11. doi: 10.1007/s13205-019-1626-7 DOI: https://doi.org/10.1007/s13205-019-1626-7

Saath, R., Wenneck, G. S., Rezende, R., Santi, D., & Araujo, L. L. (2022). Biometry and essential oil of oregano grown under different water depths and organic fertilizer doses in a protected environment. Engenharia Agrícola, 42(5), 20220027. doi: 10.1590/1809-4430-Eng.Agric.v42n5e20220027/2022 DOI: https://doi.org/10.1590/1809-4430-eng.agric.v42n5e20220027/2022

Santos, F. A. S., Rezende, R., Wenneck, G. S., Santi, D. C., & Saath, R. (2021). Inferência frequentista e bayesiana para trocas gasosas de pimentão irrigado por gotejamento. Pesquisa Agropecuária Tropical, 51(1), 66435. doi: 10.1590/1983-40632021v5166435 DOI: https://doi.org/10.1590/1983-40632021v5166435

Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. Á., Lumbreras, J. F., Coelho, M. R., Almeida, J. Á., Araújo, J. C., Fº., Oliveira, J. B., & Cunha, T. J. F. (2018). Brazilian soil classification system (5nd ed. rev. and exp.). EMBRAPA.

Souri, Z., Khanna, K., Karimi, N., & Ahmad, P. (2021). Silicon and plants: current knowledge and future prospects. Journal of Plant Growth Regulation, 40(1), 906-925. doi: 10.1007/s00344-020-10172-7 DOI: https://doi.org/10.1007/s00344-020-10172-7

Terassi, D. S., Rezende, R., Wenneck, G. S., Menezes, C. S. L., Andrean, A. F. B. A., Vila, V. V., & Silva, L. H. M. (2021). Broccoli production with regulated deficit irrigation at different phenological stages. Journal of Agricultural Science, 13(12), 71-80. doi: 10.5539/jas.v13n12p71 DOI: https://doi.org/10.5539/jas.v13n12p71

Tombeur, F., Roux, P., & Cornelis, J. T. (2021). Silicon dynamics through the lens of soil‒plant-animal interactions: perspectives for agricultural practices. Plant and Soil, 467(1-2), 1-28. doi: 10.1007/s11104-021-05076-8 DOI: https://doi.org/10.1007/s11104-021-05076-8

Trintinalha, M. A. (2005). Utilização da TDR para avaliação da distribuição espacial e estabilidade temporal do armazenamento de água em um Nitossolo Vermelho distroférrico. Tese de doutorado em Agronomia, Universidade Estadual de Maringá, Maringá, PR, Brasil. http://www.pga.uem.br/dissertacao-tese/228

Vellame, L. M., Coelho, M. A., F., Coelho, E. F., & Fraga, E. F., Jr. (2012). Lisímetro de pesagem e de lençol freático de nível constante para uso em ambiente protegido. Revista Caatinga, 25(1), 153-159.

Wenneck, G. S., Saath, R., & Rezende, R. (2022). Silicon accumulation in cauliflower grown in a protected environment with different water availability conditions. Pesquisa Agropecuária Brasileira, 57(1), 02392. doi: 10.1590/S1678-3921.pab2022.v57.02392 DOI: https://doi.org/10.1590/s1678-3921.pab2022.v57.02392

Wenneck, G. S., Saath, R., Rezende, R., Andrean, A. F. B. A., & Santi, D. C. (2021). Agronomic response of cauliflower to the addition of silicon to the soil under water deficit. Pesquisa Agropecuária Tropical, 51(1), 66908. doi: 10.1590/1983-40632021v5166908 DOI: https://doi.org/10.1590/1983-40632021v5166908

Wenneck, G. S., Saath, R., Rezende, R., Vila, V. V., Terassi, D. S., & Andrean, A. F. B. A. (2023). Silicon application increases water productivity in cauliflower under subtropical condition. Agricultural Research, 12(1), 12-19. doi: 10.1007/s40003-022-00628-5 DOI: https://doi.org/10.1007/s40003-022-00628-5

Yan, G. C., Nikolic, M., Ye, M. J., Xiao, Z. X., & Liang, Y. C. (2018). Silicon acquisition and accumulation in plant and its significance for agriculture. Journal of Integrative Agriculture, 17(10), 2138-2150. doi: 10.1016/S2095-3119(18)62037-4 DOI: https://doi.org/10.1016/S2095-3119(18)62037-4

Zhao, T., Nakano, A., Iwaski, Y., & Umeda, H. (2020). Application of hyperspectral imaging for assessment of tomato leaf water status in plant factories. Applied Sciences, 10(13), 4665. doi: 10.3390/app10134665 DOI: https://doi.org/10.3390/app10134665

Zhu, Y. X., Gong, H. J., & Yon, J. L. (2019). Role of silicon in mediating salt tolerance in plants: a review. Plants, 8(6), 147. doi: 10.3390/plants8060147 DOI: https://doi.org/10.3390/plants8060147

Downloads

Published

2024-01-30

How to Cite

Wenneck, G. S., Saath, R., Rezende, R., Terassi, D. de S., Villa e Vila, V., Oliveira, K. M. de, … Freitas, P. S. L. de. (2024). Performance of tomato grown under different water replacement depths and silicon application forms. Semina: Ciências Agrárias, 44(6), 2147–2162. https://doi.org/10.5433/1679-0359.2023v44n6p2147

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.