Development and validation of regression models from NIR spectra to predict the composition of sugarcane, soybean meal, and cornmeal

Authors

DOI:

https://doi.org/10.5433/1679-0359.2023v44n2p859

Keywords:

Chemometrics, Partial least squares regression, Spectroscopy.

Abstract

This study aimed to develop and assess regression models for predicting the chemical composition of sugarcane, soybean meal, and cornmeal using portable near-infrared (NIR) spectroscopy combined with chemometric techniques. A total of 95 sugarcane samples, 92 soybean meal samples, and 120 cornmeal samples were used. The samples were ground, and NIR spectra were obtained for each sample. Reference values were determined through conventional chemical analysis. Partial least squares regression and leave-one-out cross-validation were employed to construct the models. Models with the lowest root mean squared error in cross-validation were further validated externally. The goodness-of-fit of the models was evaluated by comparing the predicted values with those obtained through conventional laboratory methods. The constructed models properly estimated all constituents evaluated for sugarcane, soybean meal, and cornmeal (P ≥ 0.056). The models developed for predicting the contents of samples oven-dried at 55 °C (ADS) and 105 °C (ODS), total dry matter (DM), organic matter (OM), neutral detergent fiber (NDF), NDF corrected for ash and protein (NDFap), neutral detergent insoluble protein (NDIP), acid detergent fiber (ADF), crude protein (CP), non-fiber carbohydrates (NFC), and total digestible nutrients (TDN) in sugarcane; ODS, OM, NDF, ADF, indigestible NDF (iNDF), CP, TDN, and starch in soybean meal; and ODS and CP in cornmeal exhibited high accuracy and precision (R2 ≥ 0.50 and CCC ≥ 0.60). However, the models developed for predicting the levels of neutral detergent insoluble ash (NDIA) in sugarcane; ether extract (EE) and NDIA in soybean meal; and NDF, iNDF, NDIA, NFC, and EE in cornmeal demonstrated accuracy but lacked precision (R2 ≥ -0.04 and CCC ≥ 0.03). In conclusion, the portable NIR regression models provided accurate estimates and are therefore recommended for predicting the chemical composition of sugarcane, soybean meal, and cornmeal.

Downloads

Download data is not yet available.

Author Biographies

Nathália Veloso Trópia, Universidade Federal de Viçosa

PhD Student in Post-Graduate Program in Animal Science, Department of Animal Science, Universidade Federal de Viçosa, UFV, Viçosa, MG, Brazil.

Flávia Adriane de Sales Silva, Universidade Federal de Minas Gerais

Researcher, Department of Animal Science, UFV, Viçosa, MG, Brazil.

Dhones Rodrigues Andrade, Universidade Federal de Viçosa

PhD Student in Post-Graduate Program in Animal Science, Department of Animal Science, Universidade Federal de Viçosa, UFV, Viçosa, MG, Brazil.

Fernando, Universidade Federal de Viçosa

Undergraduate Student in Animal Science, Department of Animal Science, Viçosa, UFV, MG, Brazil.

Yuri Cesconetto Ebani, Universidade Federal de Viçosa

Undergraduate Student in Animal Science, Department of Animal Science, Viçosa, UFV, MG, Brazil.

Éllem Maria de Almeida Matos, Universidade Federal de Viçosa

PhD Student in Post-Graduate Program in Animal Science, Department of Animal Science, Universidade Federal de Viçosa, UFV, Viçosa, MG, Brazil.

Karen Melo Borges, Universidade Federal de Viçosa

M.e Student in Post-Graduate Program in Animal Science, Department of Animal Science, UFV, Viçosa, MG, Brazil.

Jussara Valente Roque, Universidade Federal de Goiás

Researcher, Institute of Chemistry, Universidade Federal de Goiás, UFG, Goiânia, GO, Brazil.

Diego Zanetti, Instituto Federal do Sul de Minas Gerais

PhD Prof., Department of Animal Science, Instituto Federal do Sul de Minas Gerais, IFSMG, Machado, MG, Brazil.

Sebastião de Campos Valadares Filho, Universidade Federal de Viçosa

PhD Prof., Department of Animal Science, UFV, Viçosa, MG, Brazil.

References

Ciurczak, E. W., Igne, B., Workman, J., Jr., & Burns, D. A. (2021). Handbook of near-infrared analysis. CRC Press. DOI: https://doi.org/10.1201/b22513

Companhia Nacional de Abastecimento (2021). Boletim da safra de grãos, 3o Levantamento - Safra 2020/21. https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos

Detmann, E., Silva, L. F. C., Rocha, G. C., Palma, M. N. N., & Rodrigues, J. P. P. (2021). Métodos para análise de alimentos. Suprema.

Ferreira, M. M. C. (2015). Quimiometria: conceitos, métodos e aplicações. Editora da Unicamp. DOI: https://doi.org/10.7476/9788526814714

Kennard, R. W., & Stone, L. A. (1969). Computer aided design of experiments. Technometrics, 11(1), 137-148. doi: 10.1080/00401706.1969.10490666 DOI: https://doi.org/10.1080/00401706.1969.10490666

Kobayashi, K., & Salam, M. U. (2000). Comparing simulated and measured values using mean squared deviation and its components. Agronomy Journal, 92(2), 345-352. doi: 10.2134/agronj2000.922345x DOI: https://doi.org/10.2134/agronj2000.922345x

Montgomery, D. C. (2009). Introdução ao controle estatístico da qualidade. Grupo Gen-LTC.

Ozaki, Y., Huck, C., Tsuchikawa, S., & Engelsen, S. B. (2021). Near-infrared spectroscopy: theory, spectral analysis, instrumentation, and applications. Springer. DOI: https://doi.org/10.1007/978-981-15-8648-4

Peternelli, L. A., Gonçalves, M. T. V., Fernandes, J. G., Brasileiro, B. P., & Teófilo, R. F. (2020). Selection of sugarcane clones via multivariate models using near-infrared (NIR) spectroscopy data. Australian Journal of Crop Science, 14(6), 889-895. doi: 10.21475/ajcs.20.14.06.p2099 DOI: https://doi.org/10.21475/ajcs.20.14.06.p2099

Pinto, A. C. J., & Millen, D. D. (2019). Nutritional recommendations and management practices adopted by feedlot cattle nutritionists: the 2016 Brazilian survey. Canadian Journal of Animal Science, 99(2), 392-407. doi: 10.1139/cjas-2018-0031 DOI: https://doi.org/10.1139/cjas-2018-0031

Porep, J. U., Kammerer, D. R., & Carle, R. (2015). On-line application of near infrared (NIR) spectroscopy in food production. Trends in Food Science & Technology, 46(2), 211-230. doi: 10.1016/j.tifs.2015.10.002 DOI: https://doi.org/10.1016/j.tifs.2015.10.002

Sarraguça, M. C., & Lopes, J. A. (2009). Quality control of pharmaceuticals with NIR: from lab to process line. Vibrational Spectroscopy, 49(2), 204-210. doi: 10.1016/j.vibspec.2008.07.013 DOI: https://doi.org/10.1016/j.vibspec.2008.07.013

Silva, B. C., Godoi, L. A., Valadares, S. C., Fº., Zanetti, D., Benedeti, P. D. B., & Detmann, E. (2019a). A suitable enzymatic method for starch quantification in different organic matrices. MethodsX, 6(2019), 2322-2328. doi: 10.1016/j.mex.2019.09.040 DOI: https://doi.org/10.1016/j.mex.2019.09.040

Silva, D. P., Pedroso, A. M., Pereira, M. C. S., Bertoldi, G. P., Watanabe, D. H. M., Melo, A. C. B., & Millen, D. D. (2019b). Survey of management practices used by brazilian dairy farmers and recommendations provided by 43 dairy cattle nutritionists. Canadian Journal of Animal Science, 99(4), 890-904. doi: 10.1139/cjas-2018-0004 DOI: https://doi.org/10.1139/cjas-2018-0004

Silvestre, A. M., & Millen, D. D. (2021). The 2019 brazilian survey on nutritional practices provided by feedlot cattle consulting nutritionists. Revista Brasileira de Zootecnia, 50(9), 1-25. doi: 10.37496/RBZ5020200189 DOI: https://doi.org/10.37496/rbz5020200189

Souza, R. C., Reis, R. B., Lopez, F. C. F., Mourthe, M. H. F., Lana, A. M. Q., Barbosa, F. A., & Sousa, B. M. (2015). Efeito da adição de teores crescentes de ureia na cana-de-açúcar em dietas de vacas em lactação sobre a produção e composição do leite e viabilidade econômica. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 67(2-3), 564-572. doi: 10.1590/1678-7799 DOI: https://doi.org/10.1590/1678-7799

Tedeschi, L. O. (2006). Assessment of the adequacy of mathematical models. Agricultural Systems, 89(1-2), 225-247. doi: 10.1016/j.agsy.2005.11.004 DOI: https://doi.org/10.1016/j.agsy.2005.11.004

Thomson, A. L., Humphries, D. J., Rymer, C., Archer, J. E., Grant, N. W., & Reynolds, C. K. (2018). Assessing the accuracy of current near infra-red reflectance spectroscopy analysis for fresh grass-clover mixture silages and development of new equations for this purpose. Animal Feed Science and Technology, 239(2018) 94-106. doi: 10.1016/j.anifeedsci.2018.03.009 DOI: https://doi.org/10.1016/j.anifeedsci.2018.03.009

Valadares, S. C., F., Lopes, S. A., Silva, B. C., & Chizzotti, M. L. L. Z. B. (2018). Tabelas brasileiras de composição de alimentos para ruminantes (CQBAL 4.0).

Valadares, S. C. F., L., Silva F. C., Gionbelli, M. P., Rotta, P. P., Marcondes, M. I., Chizzotti, M. L., & Prados, L. F. (2016). Exigências Nutricionais de Zebuínos Puros e Cruzados - BR-CORTE. Editora Federal de Viçosa. DOI: https://doi.org/10.5935/978-85-8179-111-1.2016B001

Downloads

Published

2023-06-26

How to Cite

Trópia, N. V., Silva, F. A. de S., Andrade, D. R., Fernando, Ebani, Y. C., Matos, Éllem M. de A., … Valadares Filho, S. de C. (2023). Development and validation of regression models from NIR spectra to predict the composition of sugarcane, soybean meal, and cornmeal. Semina: Ciências Agrárias, 44(2), 859–880. https://doi.org/10.5433/1679-0359.2023v44n2p859

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.