Forage production, morphogenetic and structural components, and nutritional value of tropical grasses in the semiarid condition

Authors

DOI:

https://doi.org/10.5433/1679-0359.2022v43n6p2499

Keywords:

Forage grass, Megathyrsus maximum, Productivity, Urochloa, Water stress.

Abstract

The objective of this study was to evaluate the forage mass, morphogenetic and structural characteristics, and nutritional value of tropical forage grasses in semiarid conditions. Nine grasses were evaluated, namely, three cultivars of Urochloa brizantha (Marandu, MG4, and Piatã); Urochloa decumbens cv. Basilisk; Urochloa humidicola cv. Llanero; Urochloa ruziziensis cv. Kennedy; and three cultivars of Megathyrsus maximum (Massai, Mombaça, and Tanzania). The experiment was laid out in a randomized complete block design in a split-plot arrangement in which the main factor were the grass cultivars and the secondary factor the seasons, with five replications per treatment. The statistical model included the fixed effect of treatment (grass), whereas the season was included as a random effect within treatments. Urochloa brizantha cvs. Marandu, MG4, and Piatã and Urochloa decumbens cv. Basilisk produced on average 858 kg ha-1 more forage mass than cvs. Kennedy and Basilisk. Megathyrsus maximum cv. Mombaça produced 40% more forage mass than the other cultivars of M. maximum (4205 vs. 3001 kg ha-1). Urochloa ruziziensis cv. Kennedy showed the lowest water use efficiency (36%). Urochloa ruziziensis cv. Kennedy exhibited the lowest leaf weight among the Urochloa cultivars (740 vs. 1319 kg ha-1). There was no treatment effect for leaf weight in the M. maximum cultivars. Urochloa ruziziensis cv. Kennedy showed the highest values of total digestible nutrients and dry matter digestibility (1.84 and 2.34%, respectively) among the other Urochloa cultivars. The M. maximum cultivars showed little differences in nutritional values. Cultivars Marandu, Piatã, and Massai exhibited better productive responses in the edaphoclimatic conditions of this study. However, future studies must be conducted evaluating the adaptation of the forage grass under semiarid conditions. Considering the settings of this study, the grasses Urochloa brizantha cvs. MG4, Marandu, and Piatã, as well as Megathyrsus maximum cvs. Massai and Mombaça, can be used in the semiarid condition.

Author Biographies

Bárbara Louise Pacheco Ramos, Universidade Estadual do Sudoeste da Bahia

Master in Animal Science, Universidade Estadual do Sudoeste da Bahia, UESB, Itapetinga, BA, Brazil.

Márcio dos Santos Pedreira, Universidade Estadual do Sudoeste da Bahia

Prof. Dr., Department of Phytotechnics and Animal Science, UESB, Vitória da Conquista, BA, Brazil.

Hugo Pereira Santos, Postgraduate student, Program in Animal Science, Universidade Estadual do Sudoeste da Bahia, UESB, Itapetinga, Bahia, Brazil

Doctorate Student of the Posgraduate Program in Animal Science, UESB, Itapetinga, BA, Brazil.

Natan Teles Cruz, Universidade Estadual do Sudoeste da Bahia

Doctorate Student of the Posgraduate Program in Animal Science, UESB, Itapetinga, BA, Brazil.

Estela Pezenti, Universidade Estadual do Sudoeste da Bahia

Doctor in Animal Science, UESB, Itapetinga, BA, Brazil.

Abias Santos Silva, Empresa Brasileira de Pesquisa Agropecuária

Post-Doctorate Researcher, Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA Gado de Leite, Juiz de Fora, MG, Brazil.

Jaciara Diavão, Empresa Brasileira de Pesquisa Agropecuária

Post-Doctorate Researcher, Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA Gado de Leite, Juiz de Fora, MG, Brazil.

Mirton José Frota Morenz, Empresa Brasileira de Pesquisa Agropecuária

Researcher in Forage Production and Pasture, EMBRAPA Gado de Leite, Juiz de Fora, MG, Brazil.

Brendow Sampaio Lima Pitta, Universidade Estadual do Sudoeste da Bahia

Graduate Student in Animal Science, UESB, Itapetinga, BA, Brazil.

Daniela Deitos Fries, Universidade Estadual do Sudoeste da Bahia

Profa Dra, Department of Exact Sciences and Natural Sciences, UESB, Itapetinga, BA, Brazil.

References

Artur, A. G., Garcez, T. B., & Monteiro, F. A. (2014). Water use efficiency of marandu palisadegrass as affected by nitrogen and sulphur rates. Revista Ciência Agronômica, 45(1), 10-17. doi: 10.1590/S1806-6 6902014000100002 DOI: https://doi.org/10.1590/S1806-66902014000100002

Association of Official Analytical Chemists (2012). Official methods of analysis (16nd ed.). AOAC.

Beloni, T., Santos, P. M., Rovadoscki, G. A., Balachowski, J., & Volaire, F. (2018). Large variability in drought survival among Urochloa spp. cultivars. Grass and Forage Science, 73(4), 947-957. doi: 10.1111/gfs.12380 DOI: https://doi.org/10.1111/gfs.12380

Cappelle, E. R., Valadares, S. D. C., Fº., Silva, J. F. C. da, & Cecon, P. R. (2001). Estimativas do valor energético a partir de características químicas e bromatológicas dos alimentos. Revista Brasileira Zootecnia, 30(6), 1837-1856. doi: 10.1590/s1516-35982001000700022 DOI: https://doi.org/10.1590/S1516-35982001000700022

Castro, M. A. Fº., Barbosa, M. A. A. F., Oliveira, R. L., Bagaldo, A. R., & Gastal, D. W. (2007). Valor nutritivo da palha de milho verde para bovinos. Revista Brasileira de Saúde e Produção Animal, 8(2), 112-121. https://revistas.ufba.br/index.php/rbspa/article/view/767

Cheruiyot, D., Midega, C. A. O., Van den Berg, J., & Khan, Z. R. (2018). Genotypic responses of Brachiaria grass (Brachiaria spp.) accessions to drought stress. Journal of Agronomy, 17(3), 136-146. doi: 10.3923/ja.2018.136.146 DOI: https://doi.org/10.3923/ja.2018.136.146

Comissão de Fertilidade do Solo do Estado de Minas Gerais (1999). Recomendações para o uso de corretivos e fertilizantes em Minas Gerais (5ª aproximação). Universidade Federal de Viçosa.

Costa, A. B. G., Difante, G. dos S., Gurgel, A. L. C., Veras, E. L. de L., Rodrigues, J. G., Pereira, M. de G., Santos, A. Y. de O., Emerenciano, J. V., Neto, & Montagner, D. B. (2021). Morphogenic and structural characteristics of Panicum cultivars during the establishment period in the Brazilian Northeast. Acta Scientiarum. Animal Sciences, 43(e50984), 1-7. doi: 10.4025/actascianimsci.v43i1.50984 DOI: https://doi.org/10.4025/actascianimsci.v43i1.50984

Costa, N. de L., Moraes, A. de, Monteiro, A. L. G., Motta, A. C. V., Oliveira, R. A. de, & Rodrigues, A. N. A. (2013). Forage productivity and morphogenesis of Axonopus aureus under different nitrogen fertilization rates. Revista Brasileira de Zootecnia, 42(8), 541-548. doi: 10.1590/S1516-35982013000800002 DOI: https://doi.org/10.1590/S1516-35982013000800002

Davies, A. (1988). The regrowth of grass swards. In M. B. Jones, & A. Lazenby (Eds.), The grass crop (pp. 85-127). London. DOI: https://doi.org/10.1007/978-94-009-1187-1_3

Dinh, T. H., Watanabe, K., Takaragawa, H., Nakabaru, M., & Kawamitsu, Y. (2017). Photosynthetic response and nitrogen use efficiency of sugarcane under drought stress conditions with different nitrogen application levels. Plant Production Science, 20(4), 412-422. doi: 10.1080/1343943X.2017.1371570 DOI: https://doi.org/10.1080/1343943X.2017.1371570

Empresa Brasileira de Pesquisa Agropecuária (2001). Capim massai (Panicum maximum cv. Massai): alternativa para diversificação de pastagens. https://www.infoteca.cnptia.embrapa.br/bitstream/doc/325284/1/COT69.pdf

Empresa Brasileira de Pesquisa Agropecuária (2006). Sistema brasileiro de classificação de solos (2a ed.). EMBRAPA Solos.

Fonseca, D. M., & Martuscello, J. A. (2010). Plantas forrageiras. Editora UFV.

Gastal, F., & Lemaire, G. (2015). Defoliation, shoot plasticity, sward structure and herbage utilization in pasture: review of the underlying ecophysiological processes. Agriculture, 5(4), 1146-1171. doi: 10.3390/agriculture5041146 DOI: https://doi.org/10.3390/agriculture5041146

Giridhar, K., & Samireddypalle, A. (2015). Impact of climate change on forage availability for livestock. In V., Sejian, J. Gaughan, L. Baumgard, & C. Prasad (Eds.), Impact of climate change on forage availability for livestock (pp. 97-112). New Delhi. DOI: https://doi.org/10.1007/978-81-322-2265-1_7

Grev, A. M., Wells, M. S., Catalano, D. N., Martinson, K. L., Jungers, J. M., & Sheaffer, C. C. (2020). Stem and leaf forage nutritive value and morphology of reduced lignin alfalfa. Agronomy Journal, 112(1), 406-417. doi: 10.1002/agj2.20011 DOI: https://doi.org/10.1002/agj2.20011

Habermann, E., Oliveira, E. A. D. de, Delvecchio, G., Belisário, R., Barreto, R. F., Viciedo, D. O., Costa, K. A. P., Prado, R. M., Gonzalez-Meler, M., & Martinez, C. A. (2021). How does leaf physiological acclimation impact forage production and quality of a warmed managed pasture of Stylosanthes capitata under different conditions of soil water availability? Science of the Total Environment, 759(11), 1-13. doi: 10.1016/j.scitotenv.2020.143505 DOI: https://doi.org/10.1016/j.scitotenv.2020.143505

Habermann, E., San Martin, J. A. B., Contin, D. R., Bossan, V. P., Barboza, A., Braga, M. R., Groppo, M., & Martinez, C. A. (2019). Increasing atmospheric CO2 and canopy temperature induces anatomical and physiological changes in leaves of the C4 forage species Panicum maximum. Plos One, 15(8), 1-25. doi: 10.1371/journal.pone.0212506 DOI: https://doi.org/10.1371/journal.pone.0238275

Hatfield, J., & Dold, C. (2019). Water-use efficiency: advances and challenges in a changing climate. Frontiers in Plant Science, 10(2), 1-14. doi: 10.3389/fpls.2019.00103 DOI: https://doi.org/10.3389/fpls.2019.00103

Instituto Nacional de Meteorologia (2019). Estações e dados/dados metereológicos. http://www.inmet.gov.br/portal/index.php?r=estacoes/estacoes Automaticas

Iwamoto, B. S., Cecato, U., Ribeiro, O. L., Mari, G. C., Peluso, E. P., & Lins, T. O. J. D. (2014). Produção e composição morfológica do capim-Tanzânia fertilizado com nitrogênio nas estações do ano. Bioscience Journal, 30(2), 530-538. https://seer.ufu.br/index.php/biosciencejournal/article/view/18078

Larcher, W. (2000). Ecologia vegetal. Rima.

Lemaire, G., & Chapman, D. (1996). Tissue flows in grazed plant communities. In J. Hodgson, & A. W. Illius (Eds.), The ecology and management of grazing systems. Wallingford: CAB International.

Macedo, V. H. M., Lage, N. M. Fº., Cunha, A. M. Q., Lopes, M. N., Silva, R. G. da, Cutrim, J. A. A. Jr., Faturi, C., Cândido, M. J. D., & Rêgo, A. C. do. (2022). Agrometeorological and agronomic characterization of Megathyrsus grasses cultivated in tropical humid and semi-arid conditions: a multivariate approach. Frontiers in Plant Science, 13(2), 1-14. doi: 10.3389/fpls.2022.809377 DOI: https://doi.org/10.3389/fpls.2022.809377

Magalhães, J. A., Carneiro, M. S. S., Andrade, A. C., Pereira, E. S., Rodrigues, B. H. N., Costa, N. L., Fogaça, F. H. S., Castro, K. N. C., & Townsend, C. R. (2015). Composição bromatológica do capim-Marandu sob efeito de irrigação e adubação nitrogenada. Semina: Ciências Agrárias, 36(2), 933-942. doi: 10.5433/1679-0359.2015v36n2p933 DOI: https://doi.org/10.5433/1679-0359.2015v36n2p933

Malinowski, D. P., & Belesky, D. P. (2000). Adaptations of endophyteinfected cool-season grasses to environmental stresses:mechanisms of drought and mineral stress tolerance. Crop Science, 40(4), 923-940. doi: 10.2135/cropsci2000.404923x DOI: https://doi.org/10.2135/cropsci2000.404923x

Mganga, K. Z., Ndathi, A. J. N., Wambua, S. M., Bosma, L., Kaindi, E. M., Kioko, T., Kadenyi, N., Musyoki, G. K., van Steenbergen, F., & Musimba, N. K. R. (2021). Forage value of vegetative leaf and stem biomass fractions of selected grasses indigenous to African rangelands. Animal Production Science, 61(14), 1476-1483. doi: 10.1071/AN19597 DOI: https://doi.org/10.1071/AN19597

Minolta, C. (1989). Manual for chlorophyll meter SPAD-502. Minolta Radiometric Instruments Divisions.

Miqueloto, T., Bernardon, A., Winter, F. L., & Sbrissia, A. F. (2020). Population dynamics in mixed canopies composed of kikuyu-grass and tall fescue. Agronomy, 10(5), 1-11. doi: 10.3390/agronomy10050684 DOI: https://doi.org/10.3390/agronomy10050684

Oliveira, J. K. S., Corrêa, D. C. da C., Cunha, A. M. Q., Rêgo, A. C. do, Faturi, C., Silva, W. L. da, & Domingues, F. N. (2020). Effect of nitrogen fertilization on production, chemical composition and morphogenesis of guinea grass in the humid tropics. Agronomy, 10(11), 1-14. doi: 10.3390/agronomy10111840 DOI: https://doi.org/10.3390/agronomy10111840

Ongaratto, F., Fernandes, M. H. M. da R., Dallantonia, E. E., Lima, L. de O., Val, G. A., Cardoso, A. da S., Rigobello, I. L., Campos, J. A. A., Reis, R. A., Ruggieri, A. C., & Malheiros, E. B. (2021). Intensive production and management of Marandu palisadegrass (Urochloa brizantha ‘Marandu’) accelerates leaf turnover but does not change herbage mass. Agronomy, 11(9), 1-13. doi: 10.3390/agronomy11091846 DOI: https://doi.org/10.3390/agronomy11091846

Perazzo, A. F., Santos, E. M., Pinho, R. M. A., Campos, F. S., Ramos, J. P. F., Aquino, M. M. de, Silva, T. C. da, & Bezerra, H. F. C. (2013). Características agronômicas e eficiência do uso da chuva em cultivares de sorgo no semiárido. Ciência Rural, 43(10), 1771-1776. doi: 10.1590/S0103-84782013001000007 DOI: https://doi.org/10.1590/S0103-84782013001000007

Pereira, G. F., Emerenciano, J. V., Neto, Difante, G. dos S., Assis, L. C. L da S. L. C., & Lima, P. de O. (2019). Morphogenic and structural characteristics of tropical forage grasses managed under different regrowth periods in the Brazilian semi-arid region. Semina: Ciências Agrárias, 40(1), 283-292. doi: 10.5433/1679-0359.2019v40n1p283 DOI: https://doi.org/10.5433/1679-0359.2019v40n1p283

Pontes, L. S., Baldissera, T. C., Giostri, A. F., Stafin, G., Santos, B. R. C. dos, & Carvalho, P. C. F. de. (2017). Effects of nitrogen fertilization and cutting intensity on the agronomic performance of warm-season grasses. Grass Forage Science, 72(4), 663-675. doi: 10.1111/gfs.12267 DOI: https://doi.org/10.1111/gfs.12267

Rodrigues, J. G. R., Difante, G. dos S., Gurgel, A. L. C., Veras, E. L. de L., Costa, A. B. G. da, Pereira, M. de G., Emerenciano, J. V., Neto, & Costa, C. M. (2021). Establishment of Brachiaria cultivars in the soil-climatic conditions of the Brazilian semi-arid region. Acta Scientiarum. Animal Sciences, 43(e51802), 1-10. doi: 10.4025/actascianimsci.v43i1.51802 DOI: https://doi.org/10.4025/actascianimsci.v43i1.51802

Rodrigues, R. C., Lana, R. P., Cutrim, J. A. A., Jr., Sanchês, S. S. C., Galvão, C. M. L., Sousa, T. V. R., Amorim, S. E. P., & Jesus, A. P. R. (2014). Acúmulo de forragem e estrutura do dossel do capim-Xaraés submetido a intensidades de cortes. Revista Brasileira de Saúde e Produção Animal, 15(4), 815-826. doi: 10.1590/s1519-99402014000400002 DOI: https://doi.org/10.1590/S1519-99402014000400002

Santos, C. M., Endres, L., Ferreira, V. M., Silva, J. V., Rolim, E. V., & Wanderley, H. C. L., Fº. (2017). Photosynthetic capacity and water use efficiency in Ricinus communis (L.) under drought stress in semi-humid and semi-arid áreas. Anais da Academia Brasileira de Ciências, 89(4), 3015-3029. doi: 10.1590/0001-3765201720160729 DOI: https://doi.org/10.1590/0001-3765201720160729

Santos, M. E. R., Fonseca, D. M., Gomes, V. M., Pimentel, R. M., Silva, G. P., & Silva, S. P. (2010). Caracterização de perfilhos de capim-braquiária em locais com três intensidades de pastejo. Revista Brasileira de Saúde e Produção Animal, 11(4), 961-975. https://www.bvs-vet.org.br/vetindex/periodicos/revista-brasileira-de-saude-e-producao-animal/11-(2010)-4/

Santos, P. M., Cruz, P. G. da, Araújo, L. C. de, Pezzopane, J. R. M., Valle, C. B. do, & Pezzopane, C. de G. (2013). Response mechanisms of Brachiaria brizantha cultivars to water déficit stress. Revista Brasileira de Zootecnia, 42(11), 767-773. doi: 10.1590/S1516-35982013001100001 DOI: https://doi.org/10.1590/S1516-35982013001100001

Schmidt, D. M., Lima, K. C., & Jesus, E. dos S. (2018). Variabilidade climática da disponibilidade hídrica na região semiárida do estado do Rio Grande do Norte. Anuário do Instituto de Geociências, 41(3), 483-491. doi: 10.11137/2018_3_483_491 DOI: https://doi.org/10.11137/2018_3_483_491

Silva, C. C. F., Bonomo, P., Pires, A. J. V., Maranhão, C. M. A., Patês, N. M. S., & Santos, L. C. (2009). Características morfogênicas e estruturais de duas espécies de braquiária adubadas com diferentes doses de nitrogênio. Revista Brasileira de Zootecnia, 38(4), 657-661. doi: 10.1590/S1516-35982009000400010 DOI: https://doi.org/10.1590/S1516-35982009000400010

Simeão, R. M., Resende, M. D., Alves, R. S., Pessoa, M., Fº., Azevedo, A. L. S., Jones, C. S., Pereira, J. F., & Machado, J. C. (2021). Genomic selection in tropical forage grasses: current status and future applications. Frontiers in Plant Science, 12(3), 1-22. doi: 10.3389/fpls.2021.665195 DOI: https://doi.org/10.3389/fpls.2021.665195

Souza, E. J., Cunha, F. F., Magalhães, F. F., Silva, T. R., & Santos, O. F. (2016). Eficiência do uso da água pelo milho doce em diferentes lâminas de irrigação e adubação nitrogenada em cobertura. Revista Brasileira Agricultura Irrigada, 10(4), 750-757. doi: 10.7127/rbai.v10n400396 DOI: https://doi.org/10.7127/rbai.v10n400396

Staniak, M., & Kocón, A. (2015). Forage grasses under drought stress in conditions of Poland. Acta Physiologiae Plantarum, 37(116), 1-10. doi: 10.1007/s11738-015-1864-1 DOI: https://doi.org/10.1007/s11738-015-1864-1

Statistical Analysis System Institute (2012). STAT user’s guide: statistics version 9.3. SAS Institute.

Szulc, P., Bocianowski, J., Nowosad, K., Zielewicz, W., & Kobus-Cisowska, J. (2021). SPAD leaf greenness index: green mass yield indicator of maize (Zea mays L.), genetic and agriculture practice relationship. Plants, 10(5), 1-15. doi: 10.3390/plants10050830 DOI: https://doi.org/10.3390/plants10050830

Tesk, C. R. M., Pedreira, B. C., Pereira, D. H., Pina, D. S., Ramos, M. A., & Mombach, M. A. (2018). Impact of grazing management on forage qualitative characteristics: a review. Scientific Electronic Archives, 11(5), 188-197. doi: 10.36560/1152018667 DOI: https://doi.org/10.36560/1152018667

Thornthwait, C. W., & Mather, R. J. (1955). The water balance. Drexel Institute of Tecnology.

Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. doi: 10.3168/jds.S0022-0302(91)78551-2 DOI: https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Vasconcelos, E. C. G., Cândido, M. J. D., Pompeu, R. C. F. F., Cavalcante, A. C. R., & Lopes, M. N. (2020). Morphogenesis and biomass production of 'BRS Tamani' guinea grass under increasing nitrogen doses. Pesquisa Agropecuária Brasileira, 55(e01235), 1-11. doi: 10.1590/S1678-3921.pab2020.v55.01235 DOI: https://doi.org/10.1590/s1678-3921.pab2020.v55.01235

Vidigal, S. M., Lopes, I. P. de C., Puiatti, M., Ribeiro, M. R. de F., & Sediyama, M. A. N. (2018). SPAD index in the diagnosis of nitrogen status in cauliflower as a function of nitrogen fertilization. Científica, 46(3), 307-314. doi: 10.15361/1984-5529.2018v46n3p307-314 DOI: https://doi.org/10.15361/1984-5529.2018v46n3p307-314

Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V., & Cadenas, A. G. (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 164(1), 2-12. doi: 10.1111/ppl.12540 DOI: https://doi.org/10.1111/ppl.12540

Downloads

Published

2022-12-12

How to Cite

Ramos, B. L. P., Pedreira, M. dos S., Santos, H. P., Cruz, N. T., Pezenti, E., Silva, A. S., … Fries, D. D. (2022). Forage production, morphogenetic and structural components, and nutritional value of tropical grasses in the semiarid condition. Semina: Ciências Agrárias, 43(6), 2499–2516. https://doi.org/10.5433/1679-0359.2022v43n6p2499

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>