Minimum inhibitory concentration of essential oils against Staphylococcus aureus isolated from dogs with external otitis
DOI:
https://doi.org/10.5433/1679-0359.2021v42n6SUPL2p3837Keywords:
Phytotherapy, Otopathies, Antibacterials, Natural antimicrobials, MIC.Abstract
Canine otitis externa is a disease that affects the external acoustic meatus of about 20% of dogs at some point in life, without predilection for race, age, or sex. It is a multifactorial disease whose etiology involves several microorganisms, detaching Staphylococcus aureus. Antimicrobials are the basis for treating this illness; however, due to the increase in antimicrobial resistance, conventional drugs have become ineffective, requiring the search for alternative therapies. In this context, essential oils (EOs) have great therapeutic potential due to their broad antimicrobial action. This study aimed to evaluate the minimum inhibitory concentration (MIC) in order to measure the MIC50 and MIC90 of gentamicin and EOs of Eugenia caryophyllata, Thymus vulgaris, Cymbopogon winterianus, Cymbopogon citratus, and Cinnamomum cassia against 62 Staphylococcus aureus strains isolated from the external acoustic meatus of dogs. All EOs showed antibacterial action against the studied microorganisms, and their MIC50 and MIC90 were as follows: Eugenia caryophyllata, 2.42 mg mL-1 and 7.25 mg mL-1; Thymus vulgaris, 9.51 mg mL-1 and 22.94 mg mL-1; Cymbopogon winterianus, 26.78 mg mL-1 and 157.79 mg mL-1; Cinnamomum cassia and Cymbopogon citratus, lower than 16.48 and 27.81 mg mL-1, with the same MIC for all isolates. The MIC50 and MIC90 found for gentamicin were 1ug mL-1and 8 ug mL-1. The MIC range found to antibiotic in this assay was 0.5 ug mL-1to 128 ug mL-1, and the isolates were classified as susceptible [48 strains (77.41%) - MIC range of 0.5-4.0 ug mL-1], intermediate [eight strains (12.90%) - (MIC = 8.0 ug mL-1], or resistant [six strains (9.68%) - MIC bigger, smaller 16 ug mL-1]. The results, according to the in vitro assays, showed that resistance to gentamicin, one of the antimicrobials most commonly used to treat canine otitis, is present in the Staphylococcus aureus population evaluated. Additionally, the tested EOs have great potential for therapeutic use, however future studies should be carried out to evaluate their in vivo efficacy.Downloads
References
Akhtar, M. S., Degaga, B., & Azam, T. (2014). Antimicrobial activity of essential oils extracted from medicinal plants against the pathogenic microorganisms: “a review”. Biological Sciences and Pharmaceutical Research, 2(1), 1-7. Retrieved from http://www.journalissues.org/IBSPR/
Al-Mariri, A., & Safi, M. (2014). In vitro antibacterial activity of several plant extracts and oils against some gram-negative bacteria, Iranian Journal of Medical Sciences, 39(1), 36-43. Retrieved from https://www. ncbi.nlm.nih.gov/pmc/articles/PMC3895893/pdf/ijms-39-36.pdf
Al-Shabib, N. A., Husain, F. M., Ahmad, I., & Baig, M. H. (2017). Eugenol inhibits quorum sensing and biofilm of toxigenic MRSA strains isolated from food handlers employed in Saudi Arabia. Biotechnology & Biotechnological Equipment, 31(2), 387-396. doi: 10.1080/13102818.2017.1281761
Andrade, B. F. M. T., Barbosa, L. N., Probst, I. S., & Fernandes Júnior, A. (2014). Antimicrobial activity of essential oils. Journal of Essential oil Research, 26(1), 34-40. doi: 10.1080/10412905.2013.860409
Baskaran, S. A., Kazmer, G. W., Hinckley, L., Andrew, S. M., & Venkitanarayanan, K. (2009). Antibacterial effect of plant-derived antimicrobials on major bacterial mastitis pathogens in vitro. Journal of Dairy Science, 92(4), 1423-1429. doi: 10.3168/jds.2008-1384.
Benameur, Q., Gervasi, T., Pellizzeri, V., Pľuchtová, M., Tali-Maama, H., Assaous, F., & Ben-Mahdi, M. H. (2018). Antibacterial activity of Thymus vulgaris essential oil alone and in combination with cefotaxime against blaESBL producing multidrug resistant Enterobacteriaceae isolates. Natural Product Research, 33, 2647-2654. doi: 10.1080/14786419.2018.
Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2014). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42-51. doi: 10.1038/nrmicro 3380
Bortolin, M., Bidossi, A., De Vecchi, E., Avveniente, M., & Drago, L. (2017). In vitro antimicrobial activity of chlorquinaldol against microorganisms responsible for skin and soft tissue infections: comparative evaluation with gentamicin and fusidic acid. Frontiers in Microbiology, June 8. Article 1039. doi: 10. 3389/fmicb.2017.01039
Bourély, C., Cazeau, G., Jarrige, N., Leblond, A., Madec, J. Y., Haenni, M., & Gay. E. (2019). Antimicrobial resistance patterns of bacteria isolated from dogs with otitis. Epidemiology and Infection, 147(121), 1-10. doi: 10.1017/S0950268818003278
Briozzo, J., Núncez, L., Chirite, J., Herszage, L., & D’ Aquino, M. (1989). Antimicrobial activity of clove oil dispersed in a concentrated sugar solution. Journal of Applied Bacteriology, 66(1), 69-75. doi: 10.1111/ j.1365-2672.1989.tb02456.x
Brugnera, D. F., Liveira, M. M. M., & Piccoli, R. H. (2011). Essential oils of Cymbopogon sp. in the control of foodborne pathogenic bacteria. Alimentos e Nutrição, 22(3), 339-343. Retrieved from http://serv-bib.fcfar.unesp.br/seer/index.php/alimentos/article/view/1810/1810
Caraciolo, F. B., Maciel, M. A., Santos, J. B., Rabelo, M. A., & Magalhães, V. (2012). Antimicrobial resistance profile of Staphylococcus aureus isolates obtained from skin and soft tissue infections of outpatients from a university hospital in Recife-PE, Brazil. Anais Brasileiro de Dermatologia, 87(6), 857-861. doi: 10.1590/S0365-05962012000600006
Cardoso, M. da G., Santos, M. G. L., Lima, K. R., Souza, E. P., Guimarães, L. G. L., & Andrade, A. M. (2007). Avaliação do potencial fungitóxico do óleo essencial de Syzygium aromaticum (L.) Merr & Perry (cravo-da-índia). Tecno-Lógica, 11(1), 11-14. doi: 10.17058/tecnolog. v11i1.154
Castro, H. G., Barbosa, L. C. A., Leal, T. C. A., Souza, C. M., & Nazareno, A. C. (2007). Crescimento, teor e composição do óleo essencial de Cymbopogon nardus (L). Revista Brasileira de Plantas Medicinais, 9(4), 55-61.
Celiktas, O. Y., Kocabas, E. E., Bedir, H. E., Vardar, S. F., Ozek, T., & Baser, K. H. C. (2007). Antimicrobial activities of methanol extracts and essential oils of Rosmarinus oficinalis, depending on location and seasonal variations. Food Chemistry, 100(2), 553-559. doi: 10.1016/j.foodchem.2005.10.0 11
Clinical and Laboratory Standards Institute (2018). Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals (5nd ed.). Wayne: CLSI Supplement VET01S. Clinical and Laboratory Standards Institute.
Córdoba, S., Vivot, W., Szusz, W., & Albo, G. (2019). Antifungal activity of essential oils against Candida species isolated from clinical samples. Mycopathologia, 184, 615-625. doi: 10.1007/s11046-019-00364-5
Costa, J. G. M., Rodrigues, F. F. G., Angélico, E. C., Silva, M. R., Mota, M. L., Santos, N. K. A.,... Lemos, T. L. G. (2005). Estudo químico-biológico dos óleos essenciais de Hyptis martiusii, Lippia sidoides e Syzigium aromaticum frente às larvas do Aedes aegypti. Revista Brasileira de Farmacognosia, 15(4), 304-309. doi: 10.1590/S0102-695X2005000400008
Dal Pozzo, M., Santurio, D. F., Rossatto, L., Vargas, A. C., Alves, S. H., Loreto, E. S., & Viegas, J. (2011). Activity of essential oil from spices against Staphylococcus spp. isolated from bovine mastitis. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 63(5), 1229-1232. doi: 10.1590/S0102-093520110005 00026
Dal Pozzo, M., Silva, L. É., Flores, S. D., Hartz, A. S., Rossatto, L., Castagna, V. A., Matiuzzi, C. M. (2012). Antibacterial activity of essential oil of Cinnamon and trans-cinnamaldehyde against Staphylococcus spp. isolated from clinical mastitis of cattle and goats. Acta Scientiae Veterinariae, 40(4), 1-5. Retrieved from https://pesquisa.bvsalud.org/portal/resource/pt/vti-475467
Das, J., Pradhan, S., & Behera, S. S. (2016). Management of otitis externa - a clinical study of 11 dogs. Intas Clinica Polivet, 17(2), 295-297. Retrieved from http://www.indianjournals.com
Ebani, V. V., Bertelloni, F., Najar, B., Nardoni, S., Pistelli, L., & Mancianti. (2020). Antimicrobial activity of essential oils against Staphylococcus and Malassezia strains isolated from canine dermatitis. Microorganisms, 8(252), 1-16. doi: 10.3390/microorganisms8020252
Ebani, V. V., Nardoni, S., Bertelloni, F., Najar, B., Pistelli, L., & Mancianti, F. (2017). Antibacterial and antifungal activity of essential oils against pathogens responsible for otitis externa in dogs and cats. Medicines, 4(21), 1-8. doi: 10.3390/medicines4020021
Edris, A. E. (2007). Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytotherapy Research, 21(4), 308-323. doi: 10.1002/ptr.2072
Ekpenyong, C. E., & Akpan, E. E. (2015). Use of Cymbopogon citratus essential oil in food preservation: recent advances and future perspectives. Critical Reviews in Food Science and Nutrition, 57(12), 2541-2559. doi: 10.1080/10408398.2015.1016140
Firmino, D. F., Cavalcante, T. T. A., Gomes, G. A., Firmino, N. C. S., Rosa, L. D., Carvalho, M. G. de, & Catunda, F. A., Jr. (2018). Antibacterial and antibiofilm activities of Cinnamomum sp. essential oil and cinnamaldehyde: Antimicrobial activities. Scientific World Journal, 2018, 7405736, 1-9. doi: 10.1155/ 2018/74 05736
Epi-Info 6.04b (1997). A Word Processing, Database and Statistics Program For Public Health. Center of Disease Control & Prevention (CDC), World Health Organization, Geneva, Switzerland, Version 6.04b.
Fu, Y., Zu, Y., Chen, L., S. H. I, X., Wang, Z., Sun, S., & Efferth, T. (2007). Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phytotherapy Research, 21(10), 989-994. doi: 10. 1002/ptr.2179
Gheller, B. G., Meirelles, A. C. F., Figueria, P. T., & Holsbach, V. (2017). Bacterial pathogens found in dogs with external otitis and its susceptibility profiles to several antimicrobial. Pubvet, 11(2), 159-167. doi: 10.22256/pubvet. v11n2.159-167
Griffin, C., & Aniya, J. (2017). Otitis controversies. In M. F. S. Torres, & P. Roudebush (Eds.), Advances in Veterinary Dermatology (pp. 210-216). Chichester, West Sussex: Wiley.
Gustafson, J. E., Liew, Y. C., Chew, S., Markham, J., Bell, H. C., Wyllie, S. G., & Warmington, J. R. (1998). Effects of tea tree essential oils on Escherichia coli. Letters on Applied Microbiology, 26(3), 194-198. doi: 10.1046/j.1472-765x.1998. 00317.x
Hammer, K. A., Carson, C. F., & Riley, T. V. (1999). Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology, 86(6), 985-990. doi: 10.1046/j.1365-2672.1999.00780.x
Hnilica, K. A. (2012). Otite Externa. Keith A. Hnilica, K. A., Patterson, A.P. In: Dermatologia de Pequenos Animais: Atlas Colorido e Guia Terapêutico (pp. 395-409). Rio de Janeiro, RJ: Elsevier Health Sciences.
Hussain, A. I., Anwar, F., & Nigamet, P. S. (2011). Antibacterial activity of some Lamiaceae essential oils using resarzurin as an indicator of cell growth. LW - Food Science and Technology, 44(4), 1199-1206. doi: 10.1016/j.lwt.2010.10.005
Imane, N. I., Fouzia, H., Azzahra, L. F., Ahmed, E., Ismail, G., Idrissa, D., Noureddine, B. (2020). Chemical composition, antibacterial and antioxidant activities of some essential oils against multidrug resistant bacteria. European Journal of Integrative Medicine, 35, 1876-3820. doi: 10.1016/j.eujim.2020.101074
Kahlmeter, G., Brown, D. F. J., Goldstein, F. W., Macgowan, A. P., Mouton, J. W., Osterlund, A., Vatopoulos, A. (2003). European harmonization of MIC breakpoints for antimicrobial susceptibility testing bacteria. Journal of Antimicrobial Chemotherapy, 52(2), 145-148. doi: 10.1093/jac/dkg312
Kaimio, M., Saijonmaa-Koulumies, L., & Laitinen-Vapaavuori, O. (2017). Survey of otitis externa in American Cocker Spaniels in Finland. Acta Veterinaria Scandinavia, 59(14), 1-14. doi: 10.1186/s130 28-017-0282-3
Kamatou, G. P. P., Van Zyl, R. L., Van Vuuren, S. F., Figueiredo, A. C., Barroso, J. G., Pedro, L. G., & Viljoen, A. M. (2008). Seasonal variation in essential oil composition, oil toxicity and the biological activity of solvent extracts of three South African Salvia species. South African Journal of Botany, 74(2), 230-237. doi: 10.1016/j.sajb.2007.08.002
Koneman, E. W., Allen, S. D., & Janda, W. M. (2008). Diagnóstico microbiológico: texto e atlas colorido (6a ed.). Rio de Janeiro: Ed. Médica e Científica.
Kot, B., Wierzchowska, K., Grużewska, A., & Lohinau, D. (2017). The effects of selected phytochemicals on biofilm formed by five methicillin-resistant Staphylococcus aureus. Natural Product Research, 32(11), 1299-1302. doi: 10.1080/14786419.2017.1340282
Lang, G., & Buchbauer, G. (2012). A review on recent research results (2008-2010) on essential oils as antimicrobials and antifungals. A review. Flavour and Fragrance Journal, 27(1), 13-39. doi: 10.1002/ ffj.2082
Lee, S., Hwang, J., Kim, J., Lee, J., Kim, H. C., Rhim, H., & Han, J. I. (2019). Biofilm production of coagulase-negative staphylococci isolated from rescued wild animals in the Republic of Korea. Acta Veterinaria Scandinavica, 61(1), 1-5. doi: 10.1186/s13028-019-0485-x
Lertsatitthanakorn, P., Taweechaisupapong, S., Aarunyanart, C., Aromdee, C., & Khunkitti, W. (2010). Effect of citronella oil on time kill profile, leakage and morphological changes of Propionibacterium acnes. Journal of Essential Oil Research, 22(3), 270-274. doi: 10.1080/10412905.2010.9700322
Lopez-Romero, J. C., González-Ríos, H., Borges, A., & Simões, M. (2015). Antibacterial effects and mode of action of selected essential oils components against Escherichia coli and Staphylococcus aureus. Evidence-Based Complementary and Alternative Medicine, 2015, 795435. doi: 10.1155/2015/795435
Lorenzi, H., & Matos, F. J. A. (2002). Plantas medicinais no Brasil: nativas e exóticas. Nova Odesa: Instituto Plantarum.
Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268-281. doi: 10.1111/j.1469-0691.2011. 03570.x
Malayeri, H. Z., Jamshidi, S., & Zahraei, T. S. (2010). Identification and antimicrobial susceptibility patterns of bacteria causing otitis externa in dogs. Veterinary Research Communications, 34(5), 435-444. doi: 10.1007/s11259-010-9417-y
Miguel, M. G. (2010). Antioxidant and anti-inflammatory activities of essential oils: a short review. Molecules, 15(12), 9252-9287. doi: 10.3390/molecules15129252
Moreira, C. A., Oliveira, L. C., Mendes, M. S., Santiago, T. de. M., Barros, E. B., & Carvalho, C. B. M. (2012). Biofilm production by clinical Staphylococci strains from canine otitis. Brazilian Journal of Microbiology, 43(1), 371-374. doi: 10.1590/S1517-83822012000100044
Nascimento, P. F. C., Nascimento, A. C., Rodrigues, C. S., Antoniolli, Â. O. R., Santos, P. O., Barbosa, A. M., Jr., & Trindade, R. C. (2007). Atividade antimicrobiana dos óleos essenciais: uma abordagem multifatorial dos métodos. Revista Brasileira de Farmacognosia, 17(1), 108-113. doi: 10.1590/S0102-695X2007000100020
Nazzaro, F., Fratianni, F., Martino, L., Coppola, R., & De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6(12), 1451-1474. doi: 10.3390/ph6121451
Netopilova, M., Houdkova, M., Urbanova, K., Rondevaldova, J. P., Van Damme, L., & Kokoska, L. (2020). In vitro antimicrobial combinatory effect of Cinnamomum cassia essential oil with 8 hydroxyquinoline against Staphylococcus aureus in liquid and vapour phase. Journal of Applied Microbiology, 129(4), 906-915. doi: 10.1111/jam.14683
Nostro, A., Sudano, R. A., Bisignano, G., Marino, A., Cannatelli, M. A., Pizzimenti, F. C.,... Blanco, A. R. (2007). Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. Journal of Medical Microbiology, 6(4), 519-523. doi: 10.1099/jmm.0.46804-0
O’Bryan, C. A., Pendleton, S. J., Crandall, P. G., & Ricke, S. C. (2015). Potential of plant essential oils and their components in animal agriculture - in vitro studies on antibacterial mode of action. Frontiers in Veterinary Science, 2(35), 1-8. doi: 10.3389/fvets.2015.00035
Oliveira, J. B., Teixeira, M. A., Paiva, L. F., Oliveira, R. F., Mendonça, A. R., & Brito, M. J. A. (2019). In vitro and in vivo antimicrobial activity of Cymbopogon citratus (DC.) stapf. against Staphylococcus spp. isolated from newborn babies in an intensive care unit. Microbial Drug Resistance, 25(10), 1490-1496. doi: 10.1089/mdr.2018.0047
Oliveira, M. A. C., Borges, A. C., Brighenti, F. L., Salvador, M. J., Gontijo, A. V. L., & Koga-Ito Cymbopogon, C. Y. (2017). Cymbopogon citratus essential oil: effect on polymicrobial caries-related biofilm with low cytotoxicity Brazilian Oral Research, 31(89), 1-12. doi: 10.1590/1807-3107bor-2017
Oliveira, V. B., Ribeiro, M. G., Almeida, A. C. S., Paes, A. C., Condas, L. A. Z., Lara, G. H. B., Listoni, F. J. P. (2012). Etiologia, perfil de sensibilidade aos antimicrobianos e aspectos epidemiológicos na otite canina: estudo retrospectivo de 616 casos. Semina: Ciências Agrárias, 33(6), 2367-2374. doi: 10.5433/ 1679-0359.2012v33n6p2367
Opalchenova, G., & Obreshkova, D. (2003). Comparative studies on the activity of basil - an essential oil from Ocimum basilicum L. against multidrug resistant clinical isolates of the genera Staphylococcus, Enterococcus and Pseudomonas by using different test methods. Journal of Microbiological Methods, 54(1), 105-110. doi: 10.1016/s0167-7012(03)00012-5
Orchard, A., & Van Vuuren, S. (2017). Commercial essential oils as potential antimicrobials to treat skin diseases. Evidence-Based Complementary and Alternative Medicine, 2017: 4517971. doi: 10.1155/20 17/4517971
Ortega-Cuadros, M., Tofiño-Rivera, A. P., Merini, L. J., & Martínez-Pabon, M. C. (2018). Antimicrobial activity of Cymbopogon citratus (Poaceae) on Streptococcus mutans biofilm and its cytotoxic effects. Revista Biologia Tropical, 66(4), 1519-29. doi: 10.15517/rbt. v66i4.33140
Oussalah, M., Caillet, S., Saucier, L., & Lacroix, M. (2006). Antimicrobial effects of selected plant essential oils on the growth of a Pseudomonas putida strains isolated from meat. Meat Science, 73(2), 236-244. doi: 10.1016/j.meatsci.2005.11.019
Penna, B., Varges, R., Martins, G. M., Martins, R. R., & Lilenbaum, W. (2010). Species distribution and antimicrobial susceptibility of Staphylococci isolated from canine otitis externa. Veterinary Dermatology, 21(3), 292-296. doi: 10.1111/j.1365-3164.2009.0084
Petrov, V., Mihaylov, G., Tsachev, I., Zhelev, G., Marutsov, P., & Koev, K. (2013). Otitis externa in dogs: microbiology and antimicrobial susceptibility. Revue de Médecine Vétérinaire, 164(1), 18-22. Retrieved from https://www.revmedvet.com/2013/RMV164_18_22.pdf
Reichling, J., Schnitzler, P., Suschke, U., & Saller, R. (2009). Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties-an overview. Forschende Komplementarmedizin, 16(2), 79-90. doi: 10.1159/000207196
Sahal, G., Woerdenbag, H. J., Hinrichs, W. L. J., Visser, A., Tepper, P. G., Quax, W. J., & Bilkay, I. S. (2020). Antifungal and biofilm inhibitory effect of Cymbopogon citratus (lemongrass) essential oil on biofilm forming by Candida tropicalis isolates; an in vitro study. Journal of Ethnopharmacology, 246, 1-9. doi: 10.1016/j.jep.2019.112188.
Scherer, C. B., Botoni, L. S., Coura, F. M., Silva, R. O., Santos, R. D., Heinemann, M. B., & Costa-Val, A. P. (2018). Frequency and antimicrobial susceptibility of Staphylococcus pseudintermedius in dogs with otitis externa. Ciência Rural, 48(4), e20170738. doi: 10.1590/0103-8478cr20170738
Silva, B. C. J. de, Hossain, S., Wimalasena, S. H. M. P., Pathirana, H. N. K. S., Dahanayake, P. S., & Heo, G. J. (2018). Comparative in vitro efficacy of eight essential oils as antibacterial agents against pathogenic bacteria isolated from pet-turtles. Veterinarni Medicina, 63, 335-343. doi: 10.17221/142/ 2017-VETMED.
Suzuki, H., Flemming, J. S., & Traad, M. E. (2008). Uso de óleos essenciais na alimentação de leitões. Ciências Agrárias e Ambientais, 6(4), 519-526. Retrieved from https://periodicos.pucpr.br/index.php/ cienciaanimal/article/viewFile/11648/10985
Swamy, M. K., Akhtar, M. S., & Sinniah, U. R. (2016). Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evidence-Based Complementary and Alternative Medicine, 2016, 3012462. doi: 10.1155/2016/3012462
Sykes, J. E., Nagle, T. N., & White, S. D. (2014). Pyoderma, otitis externa, and otitis media. In J. E. Sykes (Ed.), Canine and Feline Infectious Diseases, (pp. 800-813). St. Louis: W.B. Saunders.
Varshney, J. P. (2016). Therapeutic management of otitis externa due to Malassezia pachydermatis and Staph. Infection - a clinical study of 20 dogs. Intas Polivet, 17(2), 300-301. Retrieved from https://www. indianjournals.com/ijor.aspx?target=ijor:ipo&volume=17&issue=2&article=029
Wattanasatcha, A., Rengpipat, S., & Wanichwecharungruang, S. (2012). Thymol nanospheres as an effective antibacterial agent. International Journal of Pharmaceutics, 434(1-2), 360-365. doi: 10.1016/j.ijpharm. 2012.06.017
Yadav, M. K., Chae, S.-W., Im, G. J., Chung, J.-W., & Song, J.-J. (2015). Eugenol: a phyto-compound effective against methicillin-resistant and methicillin- sensitive Staphylococcus aureus clinical strain biofilms. PLoS One, 10(3), e0119564. doi: 10.1371/ journal. pone.0119564
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Semina: Ciências Agrárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.