Induction of salt stress tolerance in cherry tomatoes under different salicylic acid application methods

Authors

DOI:

https://doi.org/10.5433/1679-0359.2022v43n3p1145

Keywords:

Acclimatization, Irrigation, Mitigation, Solanum lycopersicum L., Salinity.

Abstract

Salinity is among the biggest challenges of irrigated agriculture, as it induces several limitations to the growth and physiology of plants; therefore, strategies should be sought that minimize its impacts on plants. In this scenario, the present study was developed to examine the effects of different salicylic acid (SA) application methods on photosynthetic pigments, chlorophyll a fluorescence, gas exchange, and biomass accumulation of cherry tomato under salt stress. The study was carried out in a greenhouse, using a Regosol soil (Psamments) with a sandy-loam texture. The treatments were distributed in a completely randomized design, in a 2 × 4 factorial arrangement consisting of two levels of electrical conductivity in the irrigation water (0.6 or 2.6 dS m-1) and four salicylic acid application methods (M1 = without SA [control] application; M2 = foliar spray; M3 = irrigation; or M4 = spray and irrigation), with five replicates. Irrigation with 2.6 dS m-1 salinity water negatively affected chlorophyll a fluorescence and the total chlorophyll, chlorophyll a, and carotenoid contents, in addition to inhibiting stem dry biomass production and root/shoot ratio. Foliar spray with salicylic acid minimized the deleterious effects of salt stress on gas exchange and chlorophyll content and increased leaf and root dry biomass accumulation and the root/shoot ratio of cherry tomatoes at 120 days after sowing.

Downloads

Download data is not yet available.

Author Biographies

André Alisson Rodrigues da Silva, Universidade Federal de Campina Grande

Doctoral Scholar of Agricultural Engineering Course, Center of Technology and Natural Resources, Universidade Federal de Campina Grande, UFCG, Campina Grande, PB, Brazil.

Luana Lucas de Sá Almeida Veloso, Universidade Federal de Campina Grande

Post Doctoral Fellow, Post Graduate Program in Agricultural Engineering, Center of Technology and Natural Resources, UFCG, Campina Grande, PB, Brazil.

Geovani Soares de Lima, Universidade Federal de Campina Grande

Prof., Post Graduate Program in Agricultural Engineering, Center of Technology and Natural Resources, UFCG, Campina Grande, PB, Brazil.

Lauriane Almeida dos Anjos Soares, Universidade Federal de Campina Grande

Profa, Academic Unit of Agricultural Sciences, Center of Agrifood Science and Technology, UFCG, Pombal, PB, Brazil.

Lucia Helena Garófalo Chaves, Universidade Federal de Campina Grande

Profa., Post Graduate Program in Agricultural Engineering, Center of Technology and Natural Resources, UFCG, Campina Grande, PB, Brazil.

Francisco de Assis da Silva, Universidade Federal de Campina Grande

Doctoral Scholar of Agricultural Engineering Course, Center of Technology and Natural Resources, Universidade Federal de Campina Grande, UFCG, Campina Grande, PB, Brazil.

Mirandy dos Santos Dias, Universidade Federal de Campina Grande

Doctoral Scholar of Agricultural Engineering Course, Center of Technology and Natural Resources, Universidade Federal de Campina Grande, UFCG, Campina Grande, PB, Brazil.

Pedro Dantas Fernandes, Universidade Federal de Campina Grande

Prof., Post Graduate Program in Agricultural Engineering, Center of Technology and Natural Resources, UFCG, Campina Grande, PB, Brazil.

References

Ahmad, P., Alyemeni, M. N., Ahanger, M. A., Egamberdieva, D., Wijaya, L., & Alam, P. (2018). Salicylic acid (SA) induced alterations in growth, biochemical attributes and antioxidant enzyme activity in faba bean (Vicia faba L.) seedlings under NaCl toxicity. Russian Journal of Plant Physiology, 65(1), 104-114. doi: 10.1134/S1021443718010132

Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15. doi: 10.1104/pp.24.1.1

Azevedo, L. C., Oliveira, A. C., Martins, I. C. S., Silva, V. L., & Ribeiro, C. S. (2018). Salinidade do solo em ambiente protegido. Revista Campo Digital, 13(1), 52-69.

Baker, N. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59(1), 89-113. doi: 10.1146/annurev.arplant.59.032607.092759

Batista, M. C., Nascimento, R. D., Maia, S. O., Jr., Nascimento, E. C. S., Bezerra, C. V. C., & Lima, R. F. (2021). Physiology and production of cherry tomato cultivars in a hydroponic system using brackish water1. Revista Brasileira de Engenharia Agrícola e Ambiental, 25(4), 219-227. doi: 10.1590/1807-1929/ agriambi.v25n4p219-227

Bezerra, I. L., Gheyi, H. R., Nobre, R. G., Lima, G. S. de, Santos, J. B. dos, & Fernandes, P. D. (2018a). Interaction between soil salinity and nitrogen on growth and gaseous exchanges in guava. Revista Ambiente & Água, 13(3), e2130. doi: 10.4136/ambi-agua.2130

Bezerra, I. L., Nobre, R. G., Gheyi, H. R., Souza, L. de P., Pinheiro, F. W. A., & Lima, G. S. de (2018b). Morphophysiology of guava under saline water irrigation and nitrogen fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(1), 32-37. doi: 10.1590/1807-1929/agriambi.v22n1p32-37

Dias, A. S., Lima, G. S. de, Pinheiro, F. W. A., Gheyi, H. R., & Soares, L. A. A. (2019). Gas exchanges, quantum yield and photosynthetic pigments of West Indian cherry under salt stress and potassium fertilization. Revista Caatinga, 32(2), 429-439. doi: 10.1590/1983-21252019v32n216rc

Dias, A. S., Lima, G. S. de, Sá, F. V. S., Gheyi, H. R., Soares, L. A. A., & Fernandes, P. D. (2018). Gas exchanges and photochemical efficiency of West Indian cherry cultivated with saline water and potassium fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(9), 628-633. doi: 10.1590/1807-1929/agriambi.v22n9p628-633

Esan, A. M., Masisi, K., Dada, F. A., & Olaiya, C. O. (2017). Comparative effects of indole acetic acid and salicylic acid on oxidative stress marker and antioxidant potential of okra (Abelmoschus esculentus) fruit under salinity stress. Scientia Horticulturae, 216(1), 278-283. doi: 10.1016/j.scienta.2017.01.007

Farhadi, N., & Ghassemi-Golezani, K. (2020). Physiological changes of Mentha pulegium in response to exogenous salicylic acid under salinity. Scientia Horticulturae, 267(1), e109325. doi: 10.1016/j.scienta. 2020.109325

Fariduddin, Q., Khan, T. A., Yusuf, M., Aafaqee, S. T., & Khalil, R. R. A. E. (2018). Ameliorative role of salicylic acid and spermidine in the presence of excess salt in Lycopersicon esculentum. Photosynthetica, 56(3), 750-762. doi: 10.1007/s11099-017-0727-y

Ferreira, D. F. (2019). SISVAR: a computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, 37(4), 529-535. doi: 10.28951/rbb.v37i4.450

Figueiredo, F. R. A., Lopes, M. D. F. Q., Silva, R. T., Nóbrega, J. S., Silva, T. I., & Bruno, R. D. L. A. (2019). Respostas fisiológicas de mulungu submetida a estresse salino e aplicação de ácido salicílico. Irriga, 24(3), 662-675. doi: 10.15809/irriga.2019v24n3p662-675

Gharbi, E., Lutts, S., Dailly, H., & Quinet, M. (2018). Comparison between the impacts of two different ways of applying salicylic acid on the responses of tomatoes (Solanum lycopersicum) to salinity. Plant Signaling & Behavior, 13(1), e1469361. doi: 10.1080/15592324.2018.1469361

Ghassemi-Golezani, K., Farhangi-Abriz, S., & Bandehagh, A. (2018). Salicylic acid and jasmonic acid alter physiological performance, assimilate mobilization and seed filling of soybean under salt stress. Acta Agriculturae Slovenica, 111(3), 597-607. doi: 10.14720/aas.2018.111.3.08

Guirra, K. S., Torres, S. B., Leite, M. S., Guirra, B. S., Nogueira, F. A., Neto, & Rêgo, A. L. (2020). Phytohormones on the germination and initial growth of pumpkin seedlings under different types of water. Revista Brasileira de Engenharia Agrícola e Ambiental, 24(12), 827-833. doi: 10.1590/1807-1929/ agriambi.v24n12p827-833

Horváth, E., Csiszár, J., Gallé, Á., Poór, P., Szepesi, Á., & Tari, I. (2015). Hardening with salicylic acid induces concentration-dependent changes in abscisic acid biosynthesis of tomato under salt stress. Journal Plant Physioly, 183(1), 54-63. doi: 10.1016/j.jplph.2015.05.010

Instituto Brasileiro de Geografia e Estatística (2020). Levantamento sistemático da produção agrícola. Recuperado de https://biblioteca.ibge.gov.br/visualizacao/periodicos/2415/epag_2019_dez.pdf

Khan, M. I. R., Asgher, M., & Khan, N. A. (2014). Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiology and Biochemistry, 80(1), 67-74. doi: 10.1016/j.plaphy.2014.03.026

Lawlor, D. W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment, 25(2), 275-294. doi: 10.1046/j.0016-8025. 2001.00814.x

Lima, G. S. de, Santos, J. B., Soares, L. A. A., Gheyi, H. R., Nobre, R. G., & Pereira, R. F. (2016). Irrigação com águas salinas e aplicação de prolina foliar em cultivo de pimentão 'All Big'. Comunicata Scientiae, 7(4), 513-522. doi: 10.14295/CS.v7i4.1671

Londono-Giraldo, L. M., Gonzalez, J., Baena, A. M., Tapasco, O., Corpas, E. J., & Taborda, G. (2020). Seleção de safras promissórias de tomate cereja selvagem por meio de parâmetros físico-químicos e teores de antioxidantes. Bragantia, 79(2), 169-179. doi: 10.1590/1678-4499.20190276

Machado, R. M. A., & Serralheiro, R. P. (2017). Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae, 3(2), e30. doi: 10.3390/horticulturae30 20030

Martínez-Cuenca, M. R., Pereira-Dias, L., Soler, S., López-Serrano, L., Alonso, D., Calatayud, A., & Díez, M. J. (2020). Adaptation to water and salt stresses of Solanum pimpinellifolium and Solanum lycopersicum var. cerasiforme. Agronomy, 10(8), e1169. doi: 10.3390/agronomy10081169

Matos, R. M., Silva, P. F., Dantas, J., Neto, Lima, A. S., Lima, V. L. A. de, & Saboya, L. M. F. (2021). Organic fertilization as an alternative to the chemical in cherry tomato growing under irrigation depths. Bioscience Journal, 37(1), e37006. doi: 10.14393/BJ-v37n0a2021-48270

Medeiros, J. F. D., Lisboa, R. D. A., Oliveira, M. D., Silva, M. J. D., Jr., & Alves, L. P. (2003). Caracterização das águas subterrâneas usadas para irrigação na área produtora de melão da Chapada do Apodi. Revista Brasileira de Engenharia Agrícola e Ambiental, 7(3), 469-472. doi: 10.1590/S1415-43662003000300010

Medeiros, P. R. F., Duarte, S. N., Uyeda, C. A., Silva, Ê. F. F., & Medeiros, J. F. (2012). Tolerância da cultura do tomate à salinidade do solo em ambiente protegido. Revista Brasileira de Engenharia Agrícola e Ambiental, 16(1), 51-55. doi: 10.1590/S1415-43662012000100007

Melo, A. S., Suassuna, J. F., Fernandes, P. D., Brito, M. E. B., Suassuna, A. F., & Aguiar, A. O., Netto. (2010). Crescimento vegetativo, resistência estomática, eficiência fotossintética e rendimento do fruto da melancieira em diferentes níveis de água. Acta Scientiarum Agronomy, 32(1), 73-79. doi: 10.4025/ actasciagron.v32i1.2136

Novais, R. F., Neves, J. C. L., & Barros, N. F. (1991). Ensaio em ambiente controlado. In A. J. Oliveira (Ed.), Métodos de pesquisa em fertilidade do solo (Cap. 12, p. 189-253). Brasília: EMBRAPA-SEA.

Parvin, K., Ahamed, K. U., Islam, M. M., Haque, M. N., Hore, P. K., Siddik, M. A., & Roy, I. (2015). Reproductive behavior of tomato plant under saline condition with exogenous application of calcium. Middle East Journal of Scientific Research, 23(12), 2920-2926. doi: 10.5829/idosi.mejsr.2015.23.12.22 866

United States. (2014). Department of Agriculture. Keys to soil taxonomy. Califórnia: Natural Resources Conservation Service.

Poursakhi, N., Razmjoo, J., & Karimmojeni, H. (2019). Interactive effect of salinity stress and foliar application of salicylic acid on some physiochemical traits of chicory (Cichorium intybus L.) genotypes. Scientia Horticulturae, 258(1), e108810. doi: 10.1016/j.scienta.2019.108810

Reis, F. O., & Campostrini, E. (2011). Microaspersão de água sobre a copa: um estudo relacionado às trocas gasosas e à eficiência fotoquímica em plantas de mamoeiro. Revista Brasileira de Agrociência, 17(1), 284-295. doi: 10.18539/cast.v17i1.203

Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. Washington, USA: Department of Agriculture.

Sá, F. V. S., Gheyi, H. R., Lima, G. S. de, Paiva, E. P., Moreira, R. C. L., & Silva, L. D. A. (2018). Water salinity, nitrogen and phosphorus on photochemical efficiency and growth of west indian cherry. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(3), 158-163. doi: 10.1590/1807-1929/agriambi.v22 n3p158-163

Santos, C. M., Gonçalves, E. R., Endres, L., Gomes, T. C. A., Jadoski, C. J., Nascimento, L. A., & Santos, E. D. (2010). Atividade fotossintética em alface (Lactuca sativa L.) submetidas a diferentes compostagens de resíduos agroindustriais. Pesquisa Aplicada & Agrotecnologia, 3(3), 95-102.

Silva, A. R. A., Bezerra, F. M. L., Lacerda, C. F., Sousa, C. H. C., & Chagas, K. L. (2016). Pigmentos fotossintéticos e potencial hídrico foliar em plantas jovens de coqueiro sob estresses hídrico e salino. Revista Agroambiente, 10(4), 317-325. doi: 10.18227/1982-8470ragro.v10i4.3650

Silva, A. A. R., Lima, G. S. de, Azevedo, C. A. V. de, Gheyi, H. R., Souza, A. R. de, & Fernandes, P. D. (2021). Salicylic acid relieves the effect of saline stress on soursop morphysiology. Ciência e Agrotecnologia, 45(1), e007021. doi: 10.1590/1413-7054202145007021

Silva, M. M. P., Vasquez, H. M., Bressan-Smith, R., Silva, J. F. C., Erbesdobler, E. D. A., & Andrade, P. S. C., Jr. (2006). Eficiência fotoquímica de gramíneas forrageiras tropicais submetidas à deficiência hídrica. Revista Brasileira de Zootecnia, 35(1), 67-74. doi: 10.1590/S1516-35982006000100008

Souri, M. K., & Tohidloo, G. (2019). Effectiveness of different methods of salicylic acid application on growth characteristics of tomato seedlings under salinity. Chemical and Biological Technologies in Agriculture, 6(1), 1-7. doi: 10.1186/s40538-019-0169-9

Tatagiba, S. D., Moraes, G. A. B. K., Nascimento, K. J. T., & Peloso, A. F. (2014). Limitações fotossintéticas em folhas de plantas de tomateiro submetidas a crescentes concentrações salinas. Engenharia na Agricultura, 22(1), 138-149. doi: doi: 10.13083/1414-3984.v22n02a05

Teixeira, P. C., Donagemma, G. K., Fontana, D., & Teixeira, W. G. (2017). Manual de métodos de análise de solo (3a ed.). Brasília: EMBRAPA Solos.

Vieira, I. G. S., Nobre, R. G., Dias, A. S., & Pinheiro, F. W. A. (2016). Cultivation of cherry tomato under irrigation with saline water and nitrogen fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(1), 55-61. doi: 10.1590/1807-1929/agriambi.v20n1p55-61

Zanandrea, I., Lima, N. F., Turchetto, A. C., Braga, E. J. B., Peters, J. Á., & Bacarin, M. A. (2006). Efeito da salinidade sob parâmetros de fluorescência em Phaseolus vulgaris. Current Agricultural Science and Technology, 12(2), 157-161. doi: 10.18539/cast.v12i2.4512

Zorb, C., Geilfus, C. M., & Dietz, K. J. (2019). Salinity and crop yield. Plant Biology, 21(1), 31-38. doi: 10. 1111/plb.12884

Downloads

Published

2022-03-16

How to Cite

Silva, A. A. R. da, Veloso, L. L. de S. A., Lima, G. S. de, Soares, L. A. dos A., Chaves, L. H. G., Silva, F. de A. da, … Fernandes, P. D. (2022). Induction of salt stress tolerance in cherry tomatoes under different salicylic acid application methods. Semina: Ciências Agrárias, 43(3), 1145–1166. https://doi.org/10.5433/1679-0359.2022v43n3p1145

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 4 > >> 

Similar Articles

You may also start an advanced similarity search for this article.