Phytochemical screening, toxicity and antimicrobial activity of different Mimosa tenuiflora extracts on Aeromonas strains
DOI:
https://doi.org/10.5433/1679-0359.2022v43n2p641Keywords:
Virulence factors, Oreochromis niloticus, Pisciculture, Antimicrobial resistance.Abstract
The indiscriminate use of synthetic veterinary drugs in fish farms for disease control has caused recurring environmental pollution and reduced productivity; however, the search for ecologically viable alternatives is increasing. Thus, this study aimed to evaluate the phytochemical characterization of the hexanic, methanolic, and aqueous extracts of black jurema (M. tenuiflora), and their antimicrobial activity against strains of Aeromonas, and acute toxicity (LC50) to fingerlings of O. niloticus. The isolates were identified, and phenotypic virulence and antimicrobial susceptibility tests were performed. A. caviae, and A. veronii bv. veronii showed 75.0 - 87.5% positivity for the virulence factors tested, and resistance to the antimicrobials ampicillin, amoxicillin, erythromycin, and tetracycline of 67.0% and 50.0%, respectively. Phytochemical screening of black jurema extracts detected phenols, flavonoids, tannins, saponins, alkaloids, and steroids/triterpenoids, with methanol proving to be more efficient in the extraction of metabolites. The methanolic and aqueous extracts showed moderate antimicrobial activity, with minimum inhibitory concentration and minimum bactericidal concentration of 250 ug mL-1, and the methanolic extract revealed an LC50 of 40 ug mL-1 for O. niloticus. This study demonstrated the efficiency of the in vitro antimicrobial activity of M. tenuiflora extracts, and their use in vivo in the treatment or prophylaxis in fish farming can be investigated to replace the use of synthetic antimicrobials.Downloads
References
Awad, E., & Awaad, A. (2017). Role of medicinal plants on growth performance and immune status in fish. Fish & Shellfish Immunology, 67(1), 40-54. doi: 10.1016/j.fsi.2017.05.034
Bezerra, D. A. C., Rodrigues, F. F. G., Costa, J. G. M., Pereira, A. V., Sousa, E. O., & Rodrigues, O. G. (2011). Abordagem fitoquímica, composição bromatológica e atividade antibacteriana de Mimosa tenuiflora (Wild) Poiret e Piptadenia stipulacea (Benth) Ducke. Acta Scientiarum. Biological Sciences, 33(1), 99-106. doi: 10.4025/actascibiolsci.v33i1.5366
Borges, I. V., Cavalcanti, L. S., Figueirêdo, A., Neto, Almeida, J. R. G. S., Rolim, L. A., & Araújo, E. C. C. (2017). Identificação da fração antimicrobiana do extrato da Mimosa tenuiflora. Comunicata Scientiae, 8(1), 155-159. doi: 10.14295/cs.v8i1.1493
Clinical and Laboratory Standards Institute (2012). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard (9nd ed., M7-A9). Wayne, PA: CLSI.
Clinical and Laboratory Standards Institute (2018). Performance standards for antimicrobial susceptibility testing (28nd ed., supplement M100). Wayne, PA: CLSI.
Cordell, G. A. (2014). Phytochemistry and traditional medicine - the revolution continues. Phytochemistry Letters, 10(1), 28-40. doi: 10.1016/j. phytol.2014.06.002
Cruz, M. P., Andrade, C. M. F., Silva, K. O., Souza, E. P. de, Yatsuda, R., Marques, L. M.,... Clemente-Napimoga, J. T. (2016). Antinoceptive and anti-inflammatory activities of the ethanolic extract, fractions and flavones isolated from Mimosa Tenuiflora (Willd.) Poir (Leguminosae). PLoS One, 11(3), e0150839. doi: 10.1371/journal.pone.0150839
Doan, H. V., Soltani, E., Ingelbrecht, J., & Soltani, M. (2020). Medicinal herbs and plants: potential treatment of monogenean infections in fish. Reviews in Fisheries Science & Aquaculture, 28(2), 260-282. doi: 10. 1080/23308249.2020.1712325
Durmic, Z., & Blache, D. (2012). Bioactive plants and plant products: effects on animal function, health and welfare. Animal Feed Science and Technology, 176(1-4), 15-162. doi: 10.1016/j.anifeedsci.2012.07.018
Euzéby, J. P. (1997). List of bacterial names with standing in nomenclature: a folder available on the internet. International Journal of Systematic and Evolutionary Microbiology, 47(2), 590-592. doi: 10.1099/0020 7713-47-2-590
Ferreira, T. L., & Evangelista, A. J. J. (2021). Mimosa tenuiflora’s antimicrobial activity on bacteria and fungi from medical importance: an integrative review. Archives of Microbiology, 203(6), 3399-3406. doi: 10.10 07/s00203-021-02330-6
Hamilton, M. A., Russo, R. C., & Thurston, R. V. (1977). Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environmental Science & Technology, 11(7), 714-719. doi: 10.1021/es60130a004
Hernandez, C., Cadenillas, L., El Maghubi, A., Caceres, I., Durrieu, V., Mathieu, C., & Bailly, J.-D. (2021). Mimosa tenuiflora aqueous extract: role of condensed tannins in anti-aflatoxin b1 activity in Aspergillus flavus. Toxins, 13(6), 391. doi: 10.3390/toxins13060391
Hongping, W., Jilun, Z., Ting, J., Yixi, B., & Xiaoming, Z. (2011). Insufficiency of the Kanagawa hemolytic test for detecting pathogenic Vibrio parahaemolyticus in Shanghai, China. Diagnostic Microbiology and Infectious Disease, 69(1), 7-11. doi: 10.1016/j.diagmicrobio.2010.08.016
Hossain, S., Silva, B. C. J., Wimalasena, S. H. M. P., Pathirana, H. N. K. S., Dahanayake, P. S., & Heo, G.-J. (2019). Characterization of virulence determinants and multiple antimicrobial resistance profiles in motile Aeromonas spp. isolated from ornamental goldfish (Carassius auratus). Journal of Exotic Pet Medicine, 29(1), 51-62. doi: 10.1053/j.jepm.2018.09.013
Huang, K., & Nitin, N. (2019). Edible bacteriophage based antimicrobial coating on fish feed for enhanced treatment of bacterial infections in aquaculture industry. Aquaculture, 502(1), 18-25. doi: 10.1016/j. aquaculture.2018.12.026
Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (1987). Avaliação da toxicidade aguda para peixes. (Manual de testes para avaliação de ecotoxicidade de agentes químicos, parte D. 3). Brasília: Ibama.
Jagoda, S. S. S. S., Honein, K., Arulkanthan, A., Ushio, H., & Asakawa, S. (2017). Genome sequencing and annotation of Aeromonas veronii strain Ae52, a multidrug-resistant isolate from septicaemic gold fish (Carassius auratus) in Sri Lanka. Genomics Data, 11(1), 46-48. doi: 10.1016/j.gdata.2016.11.011
Joshi, A., Bhobe, M., & Sattarkar, A. (2013). Phytochemical investigation of the roots of Grewia microcos Linn. Journal of Chemical and Pharmaceutical Research, 5(7), 80-87. Retrieved from https://www. advion.com/wp-content/uploads/Joshi_Goa.pdf
Kuebutornye, F. K. A., & Abarike, E. D. (2020). The contribution of medicinal plants to tilapia aquaculture: A review. Aquaculture International, 28(1), 965-983. doi: 10.1007/s10499-020-00506-3
Lee, Y. K, Kim, H. W., Liul, C. L., & Lee, H. K. (2003). A simple method for DNA extration from marine bacteria that produce extracellular materials. Journal of Microbiological Methods, 52(2), 245-250. doi: 10.1016/s0167-7012(02) 00180-x
Leite, H. A. C., Silva, A. B., Gomes, F. P., Gramacho, K. P., Souza, J. T., & Loguercio, L. L. (2013). Bacillus subtilis and Enterobacter cloacae endophytes from healthy Theobroma cacao L. trees can systemically colonize seedlings and promote growth. Applied Microbiology and Biotechnology, 97(6), 2639-2651. doi: 10.1007/s00253-012-4574-2
Meda, A., Lamien, C. E., Romito, M., Millogo, J., & Nacoulma, O. G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 9(3), 571-577. doi: 10.1016/j.foodchem.2004.10.006
Meira, C. L. C., Novaes, C. G., Novais, F. c., Jesus, v. S., Oliveira, D. M., & Aguiar, r. M. (2020). Aplication of principal componenet analysis for the evaluation of the Chemical constituents of Mimosa tenuiflora methanolic extract by DLLME/ GC – MS. Icrochemical Journal, 152(1), 104284. doi: 10.1016/j.microc.2019.103284
Missio, A. L., Tischer, B., Santos, P. S. B., Codevilla, C., Menezes, C. R., Barin, J. S.,... Tondi, G. (2017). Analytical characterization of purified mimosa (Acacia mearnsii) industrial tannin extract: Single and sequential fractionation. Separation and Purification Technology, 186(1), 218-225. doi: 10.1016/j. seppur.2017.06.010
Miyashita, A., Mochimaru, H., Kazama, H., Ohashi, A., Yamaguchi, T., Nunoura, T.,... Imachi, H. (2009). Development of 16S rRNA gene-targeted primers for detection of archaeal anaerobic methanotrophs (ANMEs). Fems Microbiology Letters, 297(1), 31-37. doi: 10.1111/j.1574-6968.2009.01648.x
Monteiro, S. H., Francisco, J. G., Campion, T. F., Pimpinato, R. F., Moura Andrade, G. C. R., Garcia, F., & Tornisielo, V. L. (2015). Multiresidue antimicrobial determination in Nile tilapia (Oreochromis niloticus) cage farming by liquid chromatography tandem mass spectrometry. Aquaculture, 447(1), 37-43. doi: 10. 1016/j.aquaculture.2015.07.002
Odeyemi, O. A., & Ahmad, A. (2015). Antibiotic resistance profiling and phenotyping of Aeromonas species isolated from aquatic sources. Saudi Journal of Biological Sciences, 24(1), 65-70. doi: 10.1016/j.sjbs. 2015.09.016
Osundiya, O. O., Oladele, R. O., & Oduyebo, O. O. (2013). Multiple Antibiotic Resistance (MAR) indices of Pseudomonas and Klebsiella species isolates in Lagos University Teaching Hospital. African Journal of Clinical and Experimental Microbiology, 14(3), 164-168. doi: 10.4314/ajcem.v14i3.8
Otto, M. (2014). Staphylococcus aureus toxins. Current Opinion in Microbiology, 17(1), 32-37. doi: 10.1016/ j.mib.2013.11.004
Reverter, M., Bontemps, N., Lecchini, D., Banaigs, B., & Sasal, P. (2014). Use of plant extracts in fish aquaculture as an alternative to chemotherapy: Current status and future perspectives. Aquaculture, 433(1), 50-61. doi: 10.1016/j.aquaculture.2014.05.048
Romero, J., Feijoo, C. G., & Navarrete, P. (2012). Health and environment in aquaculture. In E. D. Carvalho, G. S. David, & R. J. Silva (Eds.), Antibiotics in aquaculture - use, abuse and alternatives (pp. 159-198). London: IntechOpen. doi: 10.5772/28157 Retrieved from https://app.dimensions.ai/details/publication/ pub.1087205154
Salvador, R., Muller, E. E., Freitas, J. C., Leonhadt, J. H., Pretto-Giordano, L. G., & Dias, J. A. (2005). Isolation and characterization of Streptococcus spp. group B in Nile tilapias (Oreochromis niloticus) reared in hapas nets and earth nurseries in the northern region of Parana State, Brazil. Ciência Rural, 35(6), 1374-1378. doi: 10.1590/s0103-84782005000600023
Scarano, C., Piras, F., Virdis, S., Ziino, G., Nuvoloni, R., Dalmasso, A.,... Spanu, C. (2018). Antibiotic resistance of Aeromonas ssp. strains isolated from Sparus aurata reared in Italian mariculture farms. International Journal of Food Microbiology, 284(1), 91-97. doi: 10.1016/j.ijfoodmicro.2018.07.033
Shuang, M., Yong, L. W., Chen, G. L., Jing, Y., Min, Y., Xiang, N. B.,… Juan, L. (2020). Genetic diversity, antimicrobial resistance, and virulence genes of Aeromonas isolates from clinical patients, tap water systems, and food. Biomedical and Environmental Sciences, 33(6), 385-395. doi: 10.3967/bes2020.053
Silva, I. P., Carneiro, C. S., Saraiva, M. A. F., Oliveira, T. A. S., Sousa, O. V., & Evangelista-Barreto, N. S. (2018). Antimicrobial resistance and potential virulence of Vibrio parahaemolyticus isolated from water and bivalve mollusks from Bahia, Brazil. Marine Pollution Bulletin, 131(1), 757-762. doi: 10.1016/j. marpolbul.2018.05.007
Silva, J. L. S., Cavalcante, D. de H., Carvalho, F. C. T. de, Vieira, R. H. S. dos F., Sá, M. V. do C., & Sousa, O. V. (2016). Aquatic microbiota diversity in the culture of Nile tilapia (Oreochromis niloticus) using bioflocs or periphyton: virulence factors and biofilm formation. Acta Scientiarum. Animal Sciences, 38(3), 233-241. doi: 10.4025/actascianimsci.v38i3.31910
Silva, N., Junqueira, V. C. A., Silveira, N. F. A., Taniwaki, M. H., Santos, R. F. S., & Gomes, R. A. R. (2010b). Manual de métodos de análise microbiológica de alimentos e água. São Paulo, SP: Varela.
Silva, N. L. A., Miranda, G. M., & Conceição, G. M. (2010a). Triagem fitoquímica de plantas de cerrado, da área de proteção ambiental municipal do Inhamum, Caxias, Maranhão. Scientia Plena, 6(2), 025402. Retrieved from https://scientiaplena.emnuvens.com.br/sp/article/view/22
Silva, S. A. N. M., Barros, A. B., Souza, J. M. T., Moura, A. F., Araújo, A., R., Mendes, M. G. A.,... Marinho, J. D. B., Fº. (2020). Phytochemical and biological prospection of Mimosa genus plants extracts from Brazilian northeast. Phytochemistry Letters, 39(1), 173-181. doi: 10.1016/j.phytol.2020.08.010
Simonetti, E., Ethur, M. E., Castro, L. C., Kauffmann, C,m Giacomin, a. c., Ledur. A.,... Freitas, E. M. (2016). Avaliação da atividade antimicrobiana de extratos de Eugenia Anomala e Psidium salutare (Myrtacea) frente à Escherichia coli e Listeria monocytogenes. Revista Brasileira de Plantas Medicinais, 19(1), 9-18. doi: 10.590/1983-084X/15_005
Sindicato Nacional da Indústria de Produtos para a Saúde Animal (2014). Compêndio de produtos veterinários. São Paulo, SP: SINDAN. Recuperado de https://sistemas.sindan.org.br/cpvs/
Sreedharan, K., Philip, R., & Singh, I. S. B. (2013). Characterization and virulence potential of phenotypically diverse Aeromonas veronii isolates recovered from moribund freshwater ornamental ishes of Kerala, India. Antoiie van Leuwenhoek, 103(1), 53-67. doi: 10.1007/s10482-012-9786-z
Suhet, M. I., Schocken Iturino, R. P., & Amaral, L. A. (2011). Atividade hemolítica e resistência a antimicrobianos por espécies de Aeromonas isoladas de criação intensiva de Tilápias do Nilo (Oreochromis niloticus). Ars Veterinaria, 27(1), 36-44. Retrieved from http://arsveterinaria.org.br/ars/ article/view/381
Tacon, A. G. J. (2020). Trends in global aquaculture and aquafeed production: 2000-2017. Reviews in Fisheries Science & Aquaculture, 28(1), 43-56. doi: 10.1080/23308249.2019.1649634
Wagatsuma, S. (1968). A medium for the test of the hemolytic activity of Vibrio parahaemolyticus. Media Circle, 13(1), 159-161.
Zucker, E. (1985). Hazard evaluation division: standart evaluation procedure: acute toxicity test for freshwater fish. Washington: U. S. Environmental Protection Agency.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Semina: Ciências Agrárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.