Rice and rice bran from different cultivars: physicochemical, spectroscopic, and thermal analysis characterization
DOI:
https://doi.org/10.5433/1679-0359.2020v41n6Supl2p3081Keywords:
BRS AG, BRS Pampa, BRS 358, Irrigated rice, Oryza sativa.Abstract
Different rice cultivars have been developed in order to obtain grains with optimal cultivation and compositional characteristics, which affect their potential applications. Therefore, the characterization of these different rice cultivars is required. In the present study, white rice and rice bran from the cultivars BRS AG, BRS Pampa, and BRS 358 provided by EMBRAPA were characterized by physicochemical means, infrared spectroscopy (FTIR-ATR), and thermal analyses. The moisture, lipid, and ash contents did not differ among the white rice cultivars. The cultivar BRS Pampa exhibited the highest protein and lowest total carbohydrate contents. Both BRS Pampa and BRS 358 showed a higher phytic acid content than BRS AG. The highest total carbohydrate content was observed in BRS AG white rice samples, which confirmed its suitability for use in ethanol production. Among the rice bran samples, BRS 358 demonstrated the highest contents of lipid, protein, and phytic acid, and the lowest total carbohydrate content. FTIR-ATR and thermal analyses were suitable for correlating the physicochemical properties of white rice and rice bran with the molecular composition in the respective cultivars studied. Both white rice and rice bran exhibited a thermal degradation temperature at 300 °C. Lipids, protein, ash and phytic acid were considerably higher in rice bran than white rice in all cultivars studied, which demonstrates the importance of the use of this by-product.Downloads
References
Amagliani, L., O’Regan, J., Kelly, A. L., & O’Mahony, J. A. (2017). Composition and protein profile analysis of rice protein ingredients. Journal of Food Composition and Analysis, 59, 18-26. doi: 10. 1016/j.jfca.2016.12.026
Bagchi, T. B., Sharma, S., & Chattopadhyay, K. (2016). Development of NIRS models to predict protein and amylose content of brown rice and proximate compositions of rice bran. Food Chemistry, 191, 21-27. doi: 10.1016/j.foodchem.2015.05.038
Bhatnagar, A. S., Prabhakar, D. S., Prasanth Kumar, P. K., Raja Rajan, R. G., & Gopala Krishna, A. G. (2014). Processing of commercial rice bran for the production of fat and nutraceutical rich rice brokens, rice germ and pure bran. LWT - Food Science and Technology, 58(1), 306-311. doi: 10.1016/j.lwt. 2014.03.011
Bragantini, C., & Eifert, E. C. (2013). Secagem e beneficiamento. In C. M. Santiago, H. C. de P. Breseghello, & C. M. Ferreira (Eds.), Arroz (2a ed., pp. 227-236). Brasília: EMBRAPA.
Canan, C., Cruz, F. T. L., Delaroza, F., Casagrande, R., Sarmento, C. P. M., Shimokomaki, M., & Ida, E. I. (2011). Studies on the extraction and purification of phytic acid from rice bran. Journal of Food Composition and Analysis, 24(7), 1057-1063. doi: 10.1016/j.jfca.2010.12.014
Castro, A. P., Castro, E. M., & Morais, O. P. (2013). Cultivares. In C. M. Santiago, H. C. de P. Breseghello, & C. M. Ferreira (Eds.), Arroz (2a ed., pp. 75-88). Brasília: EMBRAPA.
Cheryan, M. (1980). Phytic acid interactions in food systems. Critical Reviews in Food Science and Nutrition, 13(4), 297-335.
Choi, Y. S., Choi, J. H., Han, D. J., Kim, H. Y., Lee, M. A., Kim, H. W.,… Kim, C. J. (2011). Effects of rice bran fiber on heat-induced gel prepared with pork salt-soluble meat proteins in model system. Meat Science, 88(1), 59-66. doi: 10.1016/j.meatsci.2010.12.003
Companhia Nacional de Abastecimento (2015). A cultura do arroz. Recuperado de https://www.conab. gov.br/outras-publicacoes/item/download/2523_efd93e81ea2d9ae8f0302a6d4f9 ce fc6
Companhia Nacional de Abastecimento (2020). Acompanhamento da Safra Brasileira de Grãos. 5° levantamento. Recuperado de https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos
Demirci, T., Aktaş, K., Sözeri, D., Öztürk, H. İ., & Akın, N. (2017). Rice bran improve probiotic viability in yoghurt and provide added antioxidative benefits. Journal of Functional Foods, 36, 396-403. doi: 10. 1016/j.jff.2017.07.019
Empresa Brasileira de Pesquisa Agropecuária (2015). EMBRAPA apresenta tecnologias na abertura da colheita do arroz. Recuperado de https://www.embrapa.br/busca-de-noticias/-/noticia/2472889/ embrapa-apresenta-tecnologias-na-abertura-da-colheita-do-arroz
Fan, D., Ma, W., Wang, L., Huang, J., Zhao, J., Zhang, H., & Chen, W. (2012). Determination of structural changes in microwaved rice starch using Fourier transform infrared and Raman spectroscopy. Starch/Staerke, 64(8), 598-606. doi: 10.1002/star.201100200
Favaro, L., Cagnin, L., Basaglia, M., Pizzocchero, V., van Zyl, W. H., & Casella, S. (2017). Production of bioethanol from multiple waste streams of rice milling. Bioresource Technology, 244, 151-159. doi: 10.1016/j.biortech.2017.07.108
Fuster, J. M., Cortés, P. S, Bestard, J. P., & Freixedas, F., G. (2017). Plant phosphates, phytate and pathological calcifications in chronic kidney disease. Nefrologia, 37(1), 20-28. doi: 10. 1016/j.nefroe.2017.01.018
Gomes, T. R., Carvalho, L. E., Freitas, E. R., Nepomuceno, R. C., Ellery, E. A. C., & Rufino, R. H. M. (2012). Effect of inclusion of rice bran in diets for piglets from 21 to 42 days of age. Archivos de Zootecnia, 61(233), 1-10. doi: 10.4321/S0004-05922012000100014
Huang, Y. P., & Lai, H. M. (2016). Bioactive compounds and antioxidative activity of colored rice bran. Journal of Food and Drug Analysis, 24(3), 564-574. doi: 10.1016/j.jfda.2016.01.004
Instituto Adolfo Lutz (2005). Métodos físico-químicos para alimentos (4a ed.). São Paulo: IAL.
Kaminski, T. A., Brackmann, A., Silva, L. P. da, Bender, A. B. B., & Speroni, C. S. (2013). Composição química e alterações estruturais do arroz irrigado durante o armazenamento. Semina: Ciências Agrárias, 34(3), 1167-1184. doi: 10.5433/1679-0359.2013v34n3p1167
Kim, S. M., Rico, C. W., Lee, S. C., & Kang, M. Y. (2010). Modulatory effect of rice bran and phytic acid on glucose metabolism in high fat-fed C57BL/6N mice. Journal of Clinical Biochemistry and Nutrition, 42(1), 12-17. doi: 10.3164/jcbn.09-124
Liu, C., Yang, X., Wu, W., Long, Z., Xiao, H., Luo, F.,… Lin, Q. (2017a). Elaboration of curcumin-loaded rice bran albumin nanoparticles formulation with increased in vitro bioactivity and in vivo bioavailability. Food Hydrocolloids, 77, 834-842. doi: 10.1016/j.foodhyd.2017.11.027
Liu, K. L., Zheng, J. B., & Chen, F. S. (2017b). Relationships between degree of milling and loss of Vitamin B, minerals, and change in amino acid composition of brown rice. LWT - Food Science and Technology, 82, 429-436. doi: 10.1016/j.lwt.2017.04.067
Liu, Z. H., Cheng, F. M., Cheng, W. D., & Zhang, G. P. (2005). Positional variations in phytic acid and protein content within a panicle of japonica rice. Journal of Cereal Science, 41(3), 297-303. doi: 10. 1016/j.jcs.2004.09.010
Martinez, A. P. C., Martinez, P. C. C., Souza, M. C., & Brazaca, S. G. C. (2011). Chemical change in soybean grains with germination. Ciência e Tecnologia de Alimentos, 31(1), 23-30. doi: 10.1590/ S0101-20612011000100004
Masunaga, T., Murao, N., Tateishi, H., Koga, R., Ohsugi, T., Otsuka, M., & Fujita, M. (2019). Anti-cancer activity of the cell membrane-permeable phytic acid prodrug. Bioorganic Chemistry, 92, 103240. doi: 10.1016/j.bioorg.2019.103240
Michel, R. J. S., Jr., Canabarro, N. I., Alesio, C., Maleski, T., Laber, T., Sfalcin, P.,… Mazutti, M. A. (2016). Enzymatic saccharification and fermentation of rice processing residue for ethanol production at constant temperature. Biosystems Engineering, 142, 110-116. doi: 10.1016/j.biosystemseng.2015.12. 013
Moongngarm, A., Daomukda, N., & Khumpika, S. (2012). Chemical compositions, phytochemicals, and antioxidant capacity of rice bran, rice bran layer, and rice germ. APCBEE Procedia, 2, 73-79. doi: 10.1016/j.apcbee.2012.06.014
Moro, J. D., Rosa, C. S., & Hoelzel, S. C. S. M. (2004). Composição centesimal e ação antioxidante do farelo de arroz e seus benefícios à saúde. Revista Disciplinarum Scientia, Série: Ciência da Saúde, 4(1), 33-44.
Paraginski, R. T., Ziegler, V., Talhamento, A., Elias, M. C., & Oliveira, M. (2014). Technological properties and cooking of rice grains conditioned at different. Brazilian Journal of Food Technology, 17(2), 146-153. doi: 10.1590/bjft.2014.021
Qi, J., Yokoyama, W., Masamba, K. G., Majeed, H., Zhong, F., & Li, Y. (2015). Structural and physico-chemical properties of insoluble rice bran fiber: effect of acid-base induced modifications. RSC Advances, 5(97), 79915-79923. doi: 10.1039/c5ra15408a
Rafe, A., & Sadeghian, A. (2017). Stabilization of Tarom and Domesiah cultivars rice bran: physicochemical, functional and nutritional properties. Journal of Cereal Science, 74, 64-71. doi: 10. 1016/j.jcs.2017.01.019
Rubens, P., & Heremans, K. (2000). Stability diagram of rice starch as determined with FTIR. High Pressure Research, 19(1-6), 161-166. doi: 10.1080/08957950008202550
Saw, N. K., Chow, K., Rao, P. N., & Kavanagh, J. P. (2007). Effects of inositol hexaphosphate (phytate) on calcium binding, calcium oxalate crystallization and in vitro stone growth. Journal of Urology, 177(6), 2366-2370. doi: 10.1016/j.juro.2007.01.113
Scremin, F. R., Veiga, R. S., Silva-Buzanello, R. A., Becker-Algeri, T. A., Corso, M. P., Torquato, A. S.,… Canan, C. (2017). Synthesis and characterization of protein microcapsules for eugenol storage. Journal of Thermal Analysis and Calorimetry, 131, 653-660. doi: 10.1007/s10973-017-6302-8
Silva, E. O., & Bracarense, A. P. F. R. L. (2016). Phytic acid: from antinutritional to multiple protection factor of organic systems. Journal of Food Science, 81(6), R1357-R1362. doi: 10.1111/1750-3841. 13320
Silva, O. F. (2019a). Estatísticas de produção: arroz. Recuperado de http://www.agencia.cnptia.embrapa. br/gestor/arroz/arvore/CONT000fe7457q102wx5eo07qw4xezy8czjj.html
Silva, O. F. (2019b). Sócioeconomia: arroz e feijão. Recuperado de http://www.agencia.cnptia.embrapa.br/ gestor/arroz/arvore/CONT000fe7457q102wx5eo07qw4xezy8czjj.html
Silva, R. F., Ascheri, J. L. R., & Pereira, R. G. F. A. (2007). Composição centesimal e perfil de aminoácidos de arroz e pó de café. Alimentos e Nutrição, 18(1), 325-330.
Smanalieva, J., Salieva, K., Borkoev, B., Windhab, E. J., & Fischer, P. (2015). Investigation of changes in chemical composition and rheological properties of Kyrgyz rice cultivars (Ozgon rice) depending on long-termstack-storage after harvesting. LWT - Food Science and Technology, 63(1), 626-632. doi: 10. 1016/j.lwt.2015.03.045
Sociedade Nacional de Agricultura (2017). Qualidade do arroz brasileiro é diferencial para exportações. Recuperado de http://sna.agr.br/qualidade-do-arroz-brasileiro-e-diferencial-para-exportacoes/
Souza, A. M., Pereira, R. A, Yokoo, E. M., Levy, R. B., & Sichieri, R. (2013). Alimentos mais consumidos no Brasil: Inquérito Nacional de Alimentação 2008-2009. Revista de Saúde Pública, 47(Supl. 1), 190-199. doi: 10.1590/S0034-89102013000700005
Streck, N. A., Bosco, L. C., Michelon, S., Walter, L. C., & Marcolin, E. (2006). Duração do ciclo de desenvolvimento de cultivares de arroz em função da emissão de folhas no colmo principal. Ciência Rural, 36(4), 1086-1093. doi: 10.1590/S0103-84782006000400007
Tran, U. T., Okadome, H., Murata, M., Homma, S., & Ohtsubo, K. (2001). Comparison of vietnamese and japanese rice cultivars in terms of physicochemical properties. Food Science and Technology Research, 7(4), 323-330. doi: 10.3136/fstr.7.323
Walter, M., Marchezan, E., & Avila, L. A. D. (2008). Rice: composition and nutritional characteristics. Ciência Rural, 38(4), 1184-1192. doi: 10.1590/s0103-84782008000400049
Ying, D. Y., Hlaing, M. M., Lerisson, J., Pitts, K., Cheng, L., Sanguansri, L., & Augustin, M. A. (2017). Physical properties and FTIR analysis of rice-oat flour and maize-oat flour based extruded food products containing olive pomace. Food Research International, 100, 665-673. doi: 10.1016/j. foodres.2017.07.062
Zanão, C. F. P., Canniatti-Brazaca, S. G., Sarmento, S. B. S., & Arthur, V. (2009). Efeito da irradiação gama nas características físico-químicas e sensoriais do arroz (Oryza sativa L.) e no desenvolvimento de Sitophilus oryzae L. Ciência e Tecnologia de Alimentos, 29(1), 46-55. doi: 10.1590/S0101-2061200 9000100008
Zhou, Q., Zhao, Y., Dang, H., Tang, Y., & Zhang, B. (2019). Antibacterial effects of phytic acid against foodborne pathogens and investigation of its mode of action. Journal of Food Protection, 82(5), 826-833. doi: 10.4315/0362-028X.JFP-18-418
Zhou, Y., Ding, C., Qian, X., & An, X. (2015). Further improvement of flame retardancy of polyaniline-deposited paper composite through using phytic acid as dopant or co-dopant. Carbohydrate Polymers, 115, 670-676. doi: 10.1016/j.carbpol.2014.09.025
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Semina: Ciências Agrárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.