VIS-NIR spectral reflectance for discretization of soils with high sand content

Authors

  • Gustavo Eduardo Pereira Universidade do Estado de Santa Catarina
  • Letícia Sequinatto Universidade do Estado de Santa Catarina
  • Jaime Antonio de Almeida Universidade do Estado de Santa Catarina
  • Alexandre ten Caten Universidade Federal de Santa Catarina
  • Josie Moraes Mota Universidade do Estado de Santa Catarina

DOI:

https://doi.org/10.5433/1679-0359.2019v40n1p99

Keywords:

Digital soil mapping, Pedometrics, Radiometry.

Abstract

The aim of this study is to evaluate the spatial distribution and relationships between the physicochemical attributes and radiometry of soils with high sand contents. One hundred surface horizon samples were collected for physicochemical and spectral analyses of the soil. The samples were selected spatially by the conditioned Latin hypercube method. The physicochemical analyses consisted of granulometry, organic carbon content, and iron oxides content, extracted using sodium dithionite-citrate-bicarbonate (DCB). The spectral response of the soils was analyzed in the 400 to 1000 nm range. The spectral curves were obtained from the samples of the surface horizons, which were categorized according to the attribute in question. The relationship between the soil physicochemical attributes and soil radiometry was evaluated through a Pearson's correlation. There was a tendency for the organic carbon content to decrease with an increase in soil depth, associated with the presence of soils with higher sand contents. For soils with iron contents lower than 80 g kg-1, there was an increase in the reflectance along the spectrum, whereas for soils with contents between 80 and 160 g kg-1, the reflectance decreased after 600 nm, with greater variation along the spectrum for soils with iron contents higher than 120 g kg-1. The diffuse reflectance spectroscopy could potentially allow for granulometric distinction between the soils evaluated.

Downloads

Download data is not yet available.

Author Biographies

Gustavo Eduardo Pereira, Universidade do Estado de Santa Catarina

Engo Agro, Discente do Curso de Doutorado, Programa de Pós-Graduação em Ciência do Solo, PPGCS, Universidade do Estado de Santa Catarina, UDESC, Centro de Ciências Agroveterinárias, CAV, Lages, SC, Brasil.

Letícia Sequinatto, Universidade do Estado de Santa Catarina

Profa Dra, PPGCS/CAV/UDESC, Lages, SC, Brasil.

Jaime Antonio de Almeida, Universidade do Estado de Santa Catarina

Prof. Dr., PPGCS/CAV/UDESC, Lages, SC, Brasil.

Alexandre ten Caten, Universidade Federal de Santa Catarina

Prof. Dr., Programa de Pós-Graduação em Ecossistemas Agrícolas e Naturais, Universidade Federal de Santa Catarina, UFSC, Centro de Curitibanos, Curitibanos, SC, Brasil.

Josie Moraes Mota, Universidade do Estado de Santa Catarina

Engo Agro, Discente do Curso de Doutorado, Programa de Pós-Graduação em Ciência do Solo, PPGCS, Universidade do Estado de Santa Catarina, UDESC, Centro de Ciências Agroveterinárias, CAV, Lages, SC, Brasil.

References

BALDOCK, J. A.; SKJEMSTAD, J. O. Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Organic Geochemistry, Oxford, v. 31, n. 7, p. 697-710, 2000.

BAUMGARDNER, M. F.; STONER, E. R.; SILVA, L. F.; BIEHL, L. L. Reflective properties of soils. In: BRADY, N. (Ed.). Advances in agronomy. New York: Academic Press, 1985. v. 38, p. 1-44.

BELLINASO, H.; DEMATTÊ, J. A. M.; ROMEIRO, S. A. Soil spectral library and its use in soil classification. Revista Brasileira de Ciência do Solo, Viçosa, MG, v. 34, n. 3, p. 861?870, 2010.

BEN-DOR, E. Characterization of soil properties using reflectance spectroscopy. In: THENKABAIL, P. S.; LYON, J. G.; HUETE, A. (Ed.) Hyperspectral remote sensing of vegetation. Boca Raton: CRC Press, 2011. p. 513-557.

BEN-DOR, E.; BANIN, A. Near infrared analysis (NIRA) as a simultaneously method to evaluate spectral featureless constituents in soils. Soil Science, New Brunswick, v. 159, n. 4, p. 259-269, 1995.

BEN-DOR, E.; CHABRILLAT, S.; DEMATTÊ, J. A. M.; TAYLOR, G. R.; HILL, J.; WHITING, M. L.; SOMMER, S. Using imaging spectroscopy to study soil properties. Remote Sensing of Environment, Minnesota, v. 113, n. 1, p. 538-555, 2009.

BEN-DOR, E.; IRONS, J. R.; EPEMA, G. F. Soil reflectance. In: RENCZ, A. N. Remote sensing for the earth sciences. New York: J Willey & Sons, 1999. v. 3, p. 111-188.

BRASIL. Levantamento de reconhecimento dos solos do Estado do Rio Grande do Sul. Recife: Ministério da Agricultura, 1973. 431 p.

______. Levantamento de recursos naturais. Folha SH 22, Porto Alegre e parte das folhas SH 21 e SI 22 Lagoa Mirim. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística, 1986. 796 p.

BROWN, D. J.; SHEPHERD, K. D.; WALSH, M. G.; DEWAYNE MAYS, M.; REINSCH, T. G. Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma, Amsterdam, v. 132, n. 3, p. 273-290, 2006.

COLEMAN, T. L.; AGBU, P. A.; MONTGOMERY, O. L.; GAO, T.; Spectral band selection for quantifying selected properties in highly weathered soils. Soil Science, Baltimore, v. 151, n. 5, p. 355-361, 1991.

COMPANHIA DE PESQUISAS DE RECURSOS MINERAIS - CPRM. Geodiversidade do Estado do Rio Grande do Sul. Porto Alegre: Serviço Geológico do Brasil, 2010. 254 p.

CUDAHY, T. J. Mineral mapping for exploration: an Australian journey of evolving spectral sensing technologies and industry collaboration. Geosciences, Basel, v. 6, n. 52, p. 1-48, 2016.

CURI, N.; FRANZMEIER, D. P. Effect of parent rocks on chemical and mineralogical properties of some oxisols in Brazil. Soil Science Society America Journal, Madison, v. 51, n. 1, p. 153-158, 1987.

DAY, P. R. Particle fractionation and particle-size analysis. In: BLACK, C. A. Methods of soil analysis. Madison: American Society of Agronomy, 1965. v. 1, p. 545-566.

DEMATTÊ, J. A. M.; ARAUJO, S. R.; FIORIO, P. R.; FONGARO, C. T.; NANNI, M. R. Espectroscopia VIS-NIR-SWIR na avaliação de solos ao longo de uma topossequência em Piracicaba (SP). Revista Ciência Agronômica, Fortaleza, v. 46, n. 4, p. 679-688, 2015.

DEMATTÊ, J. A. M.; MAFRA, A. L.; BERNARDES, F. F. Comportamento espectral de materiais de solos e de estruturas biogênicas associadas. Revista Brasileira de Ciência do Solo, Viçosa, MG, v. 22, n. 4, p. 621?630, 1998.

DOTTO, A. C.; DALMOLIN, R. S. D.; TEN CATEN, A.; MOURA-BUENO, J. M. Potential of spectroradiometry to classify soil clay content. Revista Brasileira de Ciência do Solo, Viçosa, MG, v. 40, n. 1, p. e0151105-e0151113, 2016.

DUNN, B. W.; BATTEN, G. D.; BEECHER, H. G.; CIAVARELLA, S. The potential of near-infrared reflectance spectroscopy analysis - a case study from the riverine plain of south-eastern Australis. Australian Journal of Experimental Agriculture, East Melbourne, v. 42, n. 5, p. 607-614, 2002.

EMBPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA - EMBRAPA. Sistema brasileiro de classificação de solos. 3. ed. Brasília: EMBRAPA, 2013. 351 p.

FONTES, M. P.; WEED, S. B. Iron oxides in selected Brazilian oxisols: mineralogy. Soil Science of America Journal, Madison, v. 55, n. 4, p. 1143-1149, 1991.

FORMAGGIO, A. R.; EPIPHANIO, J. C.; VALERIANO, M. M.; OLIVEIRA, J. B. Comportamento espectral (450-2450 nm) de solos tropicais de São Paulo. Revista Brasileira de Ciência do Solo, Viçosa, MG, v. 20, n. 1, p. 467-474, 1996.

GEE, G. W.; BAUDER, J. W. Particle-size analysis. In: KLUTE, A. Methods of soil analysis. Madison: American Society of Agronomy, 1986. v. 1, p. 383-411.

GENÚ, A. M.; DEMATTÊ, J. A. M.; FIORIO, P. R. Análise espectral de solos da Região de Mogi-Guaçú (SP). Semina: Ciências Agrárias, Londrina, v. 31, n. 1, p. 1235-1244, 2010.

JENSEN, J. R. Sensoriamento remoto do ambiente: uma perspectiva em recursos terrestres. 2. ed. São José dos Campos: Parêntese, 2009. 598 p.

MADEIRA NETTO, J. S. Etude quantitative des relations constituants mineralogiques - reflectance diffuse des latosols bresiliéns. Applicátions à l’utilisation pedologique des donnés satellitaires TM (región de Brasilia). 1991. These (Doctorat en Science du Sol) - Université Pierre et Marie Curie, Paris.

MARQUES, J. D. O.; LUIZAO, F. J.; TEIXEIRA, W. G.; SARRAZIN, M.; FERREIRA, S. J. F.; BELDINI, T. P.; MARQUES, E. M. A. Distribution of organic carbon in different soil fractions in ecosystems of central Amazonia. Revista Brasileira de Ciência do Solo, Viçosa, MG, v. 39, n. 1, p. 232-242, 2015.

MARTIN, J. P.; ZUNINI, H.; PEIRANO, P.; CAIOZI, M.; HAIDER, K. Decomposition of 14C-labelled lignins, model humic acid polymers and fungal melanins in allophonic soil. Soil Biology and Biochemistry, Oxford, v. 14, n. 1, p. 289-293, 1982.

MEHRA, O. P.; JACKSON, K. L. Iron oxide removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate. In: NATIONAL CONFERENCE ON CLAY AND CLAY MINERALS, 7., 1958, Washington. Proceedings… Washington: Pergamon Press, 1958. p. 317-327.

MILTON, E. J. Principles of field spectroscopy. International Journal of Remote Sensing, Basingstoke, v. 8, n. 12, p. 1807-1827, 1987.

MINASNY, B.; MCBRATNEY, A. B. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers and Geosciences, Oxford, v. 32, n. 9, p. 1378-1388, 2006.

NANNI, M. R.; DEMATTÊ, J. A. M. Spectral reflectance methodology in comparison to traditional soil analysis. Soil Science Society of American Journal, Madison, v. 70, n. 2, p. 393-407, 2006.

OADES, J. M.; GILLMAN, G. P.; UEHARA, G.; HUE, N. V.; VAN NOORDWIJK, M.; ROBERTSON, G. P.; WADA, K. Interactions of soil organic matter and variable-charge clays. In: COLEMAN, D. C.; OADES, J. M.; UEHARA, G. Dynamics of soil organic matter in tropical ecosystem, Honolulu: University of Hawaii Press, 1989. p. 69-95.

PASTI, H. A.; COSTA, J. F. C. L.; BOUCHER, A. Multiple-point geostatistics for modeling lithological domains at a brazilian iron ore deposit using the single normal equations simulation algorithm. Quantitative Geology and Geostatistics, Dordrecht, v. 17, n. 1, p. 397-407, 2012.

R CORE TEAM - R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna: The R Foundation for Statistical Computing, 2015. Available at: http://www.R-project.org/. Accessed at: 15 jan. 2018.

SANA, R. S.; ANGHINONI, I.; BRANDAO, Z. N.; HOLZSCHUH, M. J. Variabilidade especial de atributos fisico-químicos do solo e seus efeitos na produtividade do algodoeiro. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 18, n. 10, p. 994-1002, 2014.

SATO, M. V. Primeira aproximação da biblioteca espectral de solos do Brasil: caracterização de espectros de solos e quantificação de atributos. 2015. Dissertação (Mestrado em Solos e Nutrição de Plantas) - Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba.

SOUSA JÚNIOR, J. G. A.; DEMATTÊ, J. A. M.; GENÚ, A. M. Comportamento espectral de solos na paisagem a partir de dados coletados por sensores terrestres e orbital. Revista Brasileira de Ciência do Solo, Viçosa, MG, v. 32, n. 2, p. 727-738, 2008.

STENBERG, B.; VISCARRA ROSSEL, R. A.; MOUAZEN, A. M.; WETTERLINDD, J. Visible and near infrared spectroscopy in soil science. Advances in Agronomy, New York, v. 107, n. 1, p. 163?215, 2010.

STRECK, E. V.; KAMPF, N.; DALMOLIN, R. S. D.; KLAMT, E.; NASCIMENTO, P. C.; GIASSON, E.; PINTO, L. F. S. Solos do Rio Grande do Sul. Porto Alegre: EMATER/RS-ASCAR, 2008. 222 p.

STÜRMER, S. L. K.; ROSSATO, O. B.; COPETTI, A. C. C.; SANTOS, R. D.; CALEGARI, A.; BRUM, B. Variações nos teores de carbono orgânico em função do desmatamento e revegetação natural do solo. Ciência Florestal, Santa Maria, v. 21, n. 2, p. 241-250, 2011.

VAN REEUWIJK, L. P. (Ed.). Procedures for soil analysis. 6th ed. Wageningen: International Soil Reference and Information Centre, 2002. 101 p.

VENDRAME, P. R. S.; EBERHARDT, D. N.; BRITO, O. R.; MARCHÃO, R. L.; QUANTIN, C.; BECQUER, T. Formas de ferro e alumínio e suas relações com textura, mineralogia e carbono orgânico em Latossolos do Cerrado. Semina: Ciências Agrárias, Londrina, v. 32, n. 1, p. 1657-1666, 2011.

VICENTE, L. E.; SOUZA FILHO, C. R. Identification of mineral components in tropical soils using reflectance spectroscopy and advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sensing of Environment, Minnesota, v. 115, n. 8, p. 1824?1836, 2011.

VITORELLO, I.; GALVÃO, L. S. Spectral properties of geologic materials in the 400 to 2500 nm range: review for applications to mineral exploration and lithologic mapping. Photo Interpretation, Paris, v. 34, n. 2, p. 77-99, 1996.

Downloads

Published

2019-02-15

How to Cite

Pereira, G. E., Sequinatto, L., Almeida, J. A. de, ten Caten, A., & Mota, J. M. (2019). VIS-NIR spectral reflectance for discretization of soils with high sand content. Semina: Ciências Agrárias, 40(1), 99–112. https://doi.org/10.5433/1679-0359.2019v40n1p99

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.