Bebida de yacon (Smallanthus sonchifolius) fermentada espontaneamente

Autores

DOI:

https://doi.org/10.5433/1679-0359.2024v45n1p131

Palavras-chave:

Fermentação, Agentes anti-escurecimento, Bactérias lácticas, Frutooligossacarídeos, Compostos fenólicos.

Resumo

Yacon (Smallanthus sonchifolius), raiz tuberosa rica em compostos fenólicos e fibras, apresenta efeitos prebióticos benéficos na prevenção e/ou redução do risco de doenças crônicas não transmissíveis. No entanto, o seu curto prazo de validade leva a uma diminuição destes compostos promotores da saúde, o que pode ser evitado através de certas estratégias. Abordando isso, nosso estudo se concentrou na produção de bebidas de yacon com agentes antiescurecimento (cisteína ou ácido cítrico) e avaliação da fermentação espontânea durante o armazenamento. Foram elaboradas três bebidas de yacon: uma com cisteína outra com ácido cítrico (ambas com 0,05% p/p) e uma bebida controle. Durante um período de armazenamento de 60 dias, essas bebidas foram submetidas a análises de contagens microbiológicas, composição nutricional, características físico-químicas, compostos fenólicos totais e ácidos fenólicos. Os dados foram avaliados por meio da ANOVA e as comparações foram feitas pelo teste de Duncan (p≤0,05) ou por meio de modelos de regressão. Em relação aos microrganismos, todas as bebidas atingiram 109 UFC.mL-1 após 30 dias de armazenamento. O impacto dos agentes antiescurecimento variou, com a bebida de ácido cítrico mantendo um pH desejável (<4,5) propício para bebidas fermentadas, inibindo bactérias indesejáveis. Também apresentou maior quantidade proporcional inicial de frutooligossacarídeos e menor variação ao longo de 30 e 60 dias de armazenamento. No entanto, esta bebida continha teores mais baixos de compostos fenólicos, como ácidos clorogênico e gálico (230,37 ± 168,63 e 40,87 ± 1,32 μg.mL-1, respectivamente). Concluindo, a fermentação espontânea provou ser uma técnica valiosa para aumentar o valor nutricional e funcional das bebidas de yacon, especialmente aquelas com adição de ácido cítrico, que apresentaram maior proporção de frutooligossacarídeos.

Downloads

Não há dados estatísticos.

Biografia do Autor

Carolina Paula Gouvêa de Souza, Universidade Vila Velha

Doutoranda em Biotecnologia Vegetal, Programa de Pós-Graduação em Biotecnologia Vegetal, Laboratório de Biotecnologia de Alimentos, Universidade Vila Velha, UVV, Vila Velha, ES, Brasil.

Ana Claudia Frasson Pretti, Universidade Vila Velha

Graduanda em Nutrição, Universidade Vila Velha, UVV, Vila Velha, ES, Brasil.

Lílian Christiane da Silva Souza, Universidade Vila Velha

Graduanda em Nutrição, Universidade Vila Velha, UVV, Vila Velha, ES, Brasil.

Ana Carolina Bianco Gomes, Universidade Vila Velha

Doutoranda em Biotecnologia Vegetal, Programa de Pós-Graduação em Biotecnologia Vegetal, Laboratório de Biotecnologia de Alimentos, Universidade Vila Velha, UVV, Vila Velha, ES, Brasil.

Rodrigo Scherer, Universidade Vila Velha

Prof. Dr., Programa de Pós-Graduação em Biotecnologia Vegetal, Universidade Vila Velha, UVV, Vila Velha, ES, Brasil.

Mayara Fumiere Lemos, Universidade Vila Velha

Dra. em Ciências Farmacêuticas, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Vila Velha, UVV, Vila Velha, ES, Brasil.

Carmelita Zacchi Scolforo, Universidade Vila Velha

Profa. Dra., Curso de Nutrição, Universidade Vila Velha, UVV, Vila Velha, ES, Brasil.

Patrícia Campos Bernardes, Universidade Federal do Espírito Santo

Prof. Dr., Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Departamento de Engenharia de Alimentos, Universidade Federal do Espírito Santo, UFES, Alegre, ES, Brasil.

Christiane Mileib Vasconcelos, Universidade Vila Velha

Profa. Dra., Programa de Pós-Graduação em Biotecnologia Vegetal, Universidade Vila Velha, UVV, Vila Velha, ES, Brasil.

Referências

Adam, A., Crespy, V., Levrat-Verny, M. A., Leenhardt, F., Leuillet, M., Demigné, C., & Rémésy, C. (2002). The bioavailability of ferulic acid is governed primarily by the food matrix rather than its metabolism in intestine and liver in rats. Journal of Nutrition, 132(7), 1962-1968. doi: 10.1093/jn/132.7.1962 DOI: https://doi.org/10.1093/jn/132.7.1962

Akalın, A. S., Fenderya, S., & Akbulut, N. (2004). Viability and activity of bifidobacteria in yoghurt containing fructooligosaccharide during refrigerated storage. International Journal of Food Science & Technology, 39(6), 613-621. doi:10.1111/j.1365-2621.2004.00829.x DOI: https://doi.org/10.1111/j.1365-2621.2004.00829.x

Alves, A. M., Dias, T., Hassimotto, N. M. A., & Naves, M. M. V. (2017). Ascorbic acid and phenolic contents, antioxidant capacity and flavonoids composition of Brazilian savannah native fruits. Food Science and Technology, 37(4), 564-569. doi: 10.1590/1678-457x.26716 DOI: https://doi.org/10.1590/1678-457x.26716

Antosova, M., & Polakovic, M. (2001). Fructosyltransferases: the enzymes catalyzing production of fructooligosaccharides. Chemical Papers, 55(6), 350-358.

Asquieri, E. R., Nishi, A. C. F., Batista, R. D., & Asquieri, E. M. A. R. (2020). Yacon extract drying (Smallanthus sonchifolius) by Spray Dryer: effect of the different carrier agents and evaluation of the levels of fructooligosaccharides and phenolic compounds. Research, Society and Development, 9(7), e591974521. doi: 10.33448/rsd-v9i7.4521 DOI: https://doi.org/10.33448/rsd-v9i7.4521

Asquieri, E. R., Rabelo, A. M. S., & Silva, A. G. M. (2008). Fermented jackfruit: study on its physicochemical and sensorial characteristics. Ciência e Tecnologia de Alimentos, 28(4), 881-887. doi: 10.1590/S0101-20612008000400018 DOI: https://doi.org/10.1590/S0101-20612008000400018

Association of Official Analytical Chemists (1997). Association of official analytical chemists international official methods of analysis (16nd ed.). AOAC.

Association of Official Analytical Chemists (2000). Official methods of analysis. Univ. Michigan, Assoc. Off. Analytical Chem.

Association of Official Analytical Chemists (2005). Official methods of analysis. Int. (18nd ed.). AOAC.

Bloor, S. J. (2001). Overview of methods for analysis and identification of flavonoids, Methods in Enzymology, 335, 3-14. doi: 10.1016/S0076-6879(01)35227-8 DOI: https://doi.org/10.1016/S0076-6879(01)35227-8

Borges, J. T. S., Pirozi, M. R., Paula, C. D., Vidigal, J. G., Silva, N. A. S., & Caliman, F. R. B. (2012). Yacon na alimentação humana: aspectos nutricionais, funcionais, utilização e toxicidade. Scientia Amazonia, 1(3), 3-16.

Bourdichon, F., Casaregola, S., Farrokh, C., Frisvad, J. C., Gerds, M. L., Hammes, W. P., Harnett, J., Huys, G., Laulund, S., Ouwehand, A., Powell, I. B., Prajapati, J. B., Seto, Y., Ter Schure, E., Van Boven, A., Vankerckhoven, V., Zgoda, A., Tuijtelaars, S., & Hansen, E. B. (2012). Food fermentations: microorganisms with technological beneficial use. International Journal of Food Microbiology, 154(3), 87-97. doi: 10.1016/j.ijfoodmicro.2011.12.030 DOI: https://doi.org/10.1016/j.ijfoodmicro.2011.12.030

Brunetto, M. del R., Gutiérrez, L., Delgado, Y., Gallignani, M., Zambrano, A., Gómez, Á., Ramos, G., & Romero, C. (2007). Determination of theobromine, theophylline and caffeine in cocoa samples by a high-performance liquid chromatographic method with on-line sample cleanup in a switching-column system. Food Chemistry, 100(2), 459-467. doi: 10.1016/j.foodchem.2005.10.007 DOI: https://doi.org/10.1016/j.foodchem.2005.10.007

Caetano, B. F. R., Moura, N. A., Almeida, A. P. S., Dias, M. C., Sivieri, K., & Barbisan, L. F. (2016). Yacon (Smallanthus sonchifolius) as a food supplement: health-promoting benefits of fructooligosaccharides. Nutrients, 8(7), 436-449. doi: 10.3390/nu8070436 DOI: https://doi.org/10.3390/nu8070436

Caleja, C., Ribeiro, A., Barreiro, M. F., & Ferreira, I. C. F. R. (2017). Phenolic compounds as nutraceuticals or functional food ingredients. Current Pharmaceutical Desing, 23(19), 2787-2806. doi: 10.2174/1381612822666161227153906 DOI: https://doi.org/10.2174/1381612822666161227153906

Campos, D., Aguilar‐Galvez, A., & Pedreschi, R. (2016). Stability of fructooligosaccharides, sugars and colour of yacon (Smallanthus sonchifolius) roots during blanching and drying. International Journal of Food Science and Technology, 51(5), 1177-1185. doi: 10.1111/ijfs.13074 DOI: https://doi.org/10.1111/ijfs.13074

Campos, F. M., Couto, J. A., Figueiredo, A. R., Tóth, I. V., Rangel, A. O. S. S., & Hogg, T. A. (2009). Cell membrane damage induced by phenolic acids on wine lactic acid bacteria. International Journal of Food Microbiology, 135(2), 144-151. doi:10.1016/j.ijfoodmicro.2009.07.031 DOI: https://doi.org/10.1016/j.ijfoodmicro.2009.07.031

Carvalho, J. O., & Orlanda, J. F. F. (2017). Heat stability and effect of pH on enzyme activity of polyphenol oxidase in buriti (Mauritia flexuosa Linnaeus f.) fruit extract. Food Chemistry, 233(15), 159-163. doi: 10.1016/j.foodchem.2017.04.101 DOI: https://doi.org/10.1016/j.foodchem.2017.04.101

Chaud, S. G., & Sgarbieri, V. C. (2006). Propriedades funcionais (tecnológicas) da parede celular de leveduras da fermentação alcoólica e das frações glicana, manana e glicoproteína. Ciência e Tecnologia de Alimentos, 26(2), 369-379. doi: 10.1590/S0101-20612006000200020 DOI: https://doi.org/10.1590/S0101-20612006000200020

Corazza, M. L., Rodrigues, D. G., & Nozaki, J. (2001). Preparação e caracterização do vinho de laranja. Química Nova, 24(4), 449-452. doi: 10.1590/S0100-40422001000400004 DOI: https://doi.org/10.1590/S0100-40422001000400004

Cueva, C., Moreno-Arribas, M. V., Martín-Álvarez, P. J., Bills, G., Vicente, M. F., Basilio, A., Rivas, C. L., Requena, T., Rodríguez, J. M., & Bartolomé, B. (2010). Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Research in. Microbiology, 161(5), 372-382. doi: 10.1016/j.resmic.2010.04.006 DOI: https://doi.org/10.1016/j.resmic.2010.04.006

Curiel, J. A., Rodríguez, H., Landete, J. M., Rivas, B., & Muñoz, R. (2010). Ability of Lactobacillus brevis strains to degrade food phenolic acids. Food Chemistry, 120(1), 225-229. doi: 10.1016/j.foodchem.2009.10.012 DOI: https://doi.org/10.1016/j.foodchem.2009.10.012

Di Cagno, R., Coda, R., De Angelis, M., & Gobbetti, M. (2013). Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiology, 33(1), 1-10. doi: 10.1016/j.fm.2012.09.003 DOI: https://doi.org/10.1016/j.fm.2012.09.003

Ding, C. K., Chachin, K., Ueda, Y., Imahori, Y., & Wang, C. Y. (2001). Metabolism of phenolic compounds during loquat fruit development. Journal of Agricultural and Food Chemistry, 49(6), 2883-2888. doi: 10.1021/jf0101253 DOI: https://doi.org/10.1021/jf0101253

Evangelista, S. R., Miguel, M. G. C. P., Silva, C. F., Pinheiro, A. C. M., & Schwan, R. F. (2015). Microbiological diversity associated with the spontaneous wet method of coffee fermentation. International Journal of Food Microbiology, 210, 102-112. doi: 10.1016/j.ijfoodmicro.2015.06.008 DOI: https://doi.org/10.1016/j.ijfoodmicro.2015.06.008

Farah, A., Monteiro, M., Donangelo, C. M., & Lafay, S. (2008). Chlorogenic acids from green coffee extract are highly bioavailable in humans. The Journal of Nutrition, 138(12), 2309-2315. doi: 10.3945/jn.108.095554 DOI: https://doi.org/10.3945/jn.108.095554

Ferreres, F., Gomes, D., Valentão, P., Gonçalves, R., Pio, R., Chagas, E. A., Seabra, R. M., & Andrade, P. B. (2009). Improved loquat (Eriobotrya japonica Lindl.) cultivars: variation of phenolics and antioxidative potential. Food Chemistry, 114(3), 1019-1027. doi: 10.1016/j.foodchem.2008.10.065 DOI: https://doi.org/10.1016/j.foodchem.2008.10.065

Filannino, P., Bai, Y., Di Cagno, R., Gobbetti, M., & Gänzle, M. G. (2015). Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree. Food Microbiology, 46(nº), 272-279. doi: 10.1016/j.fm.2014.08.018 DOI: https://doi.org/10.1016/j.fm.2014.08.018

Fleming, H. P., McDonald, L. C., McFeeters, R. F., Thompson, R. L., & Humphries, E. G. (1995). Fermentation of cucumbers without sodium chloride. Journal of Food Science, 60(2), 312-315. doi: 10.1111/j.1365-2621.1995.tb05662.x DOI: https://doi.org/10.1111/j.1365-2621.1995.tb05662.x

García‐Martínez, T., Puig‐Pujol, A., Peinado, R. A., Moreno, J., & Mauricio, J. C. (2012). Potential use of wine yeasts immobilized on Penicillium chrysogenum for ethanol production. Journal of Chemical Technology & Biotechnology, 87(3), 351-359. doi: 10.1002/jctb.2725 DOI: https://doi.org/10.1002/jctb.2725

Genta, S. B., Cabrera, W. M., Grau, A., & Sánchez, S. S. (2005). Subchronic 4-month oral toxicity study of dried Smallanthus sonchifolius (yacon) roots as a diet supplement in rats. Food and Chemical Toxicology, 43(11), 1657-1665. doi: 10.1016/j.fct.2005.05.007 DOI: https://doi.org/10.1016/j.fct.2005.05.007

Graefe, S., Hermann, M., Manrique, I., Golombek, S., & Bürkert, A. (2004). Effects of post-harvest treatments on the carbohydrate composition of yacon roots in the Peruvian Andes. Fields Crops Research, 86(10), 157-165. doi: 10.1016/j.fcr.2003.08.003 DOI: https://doi.org/10.1016/j.fcr.2003.08.003

Gusso, A. P., Mattanna, P., & Richards, N. (2015). Yacon: benefícios à saúde e aplicações tecnológicas. Ciência Rural, 4545, 912-919. doi: 10.1590/0103-8478cr20140963 DOI: https://doi.org/10.1590/0103-8478cr20140963

Hu, K., Jin, G. J., Mei, W. C., Li, T., & Tao, Y. S. (2018). Increase of medium-chain fatty acid ethyl ester content in mixed H. uvarum/S. cerevisiae fermentation leads to wine fruity aroma enhancement. Food Chemistry, 239, 495-501. doi: 10.1016/j.foodchem.2017.06.151 DOI: https://doi.org/10.1016/j.foodchem.2017.06.151

Ioannou, I., & Ghoul, M. (2013). Prevention of enzymatic browning in fruit and vegetables. European Scientific Journal, 9(30), 310-341. doi: 10.19044/ESJ.2013.V9N30P%P

Kalchayanand, N., Frethem, C., Dunne, P., Sikes, A., & Ray, B. (2002). Hydrostatic pressure and bacteriocin-triggered cell wall lysis of Leuconostoc mesenteroides. Innovative Food Science & Emerging Technologies, 3(1), 33-40. doi: 10.1016/S1466-8564(02)00004-8 DOI: https://doi.org/10.1016/S1466-8564(02)00004-8

Kim, B., Hong, V. M., Yang, J., Hyun, H., Im, J. J., Hwang, J., Yoon, S., & Kim, J. E. (2016). A review of fermented foods with beneficial effects on brain and cognitive function. Preventive Nutrition and Food Science, 21(4), 297-309. doi: 10.3746/pnf.2016.21.4.297 DOI: https://doi.org/10.3746/pnf.2016.21.4.297

Kohajdová, Z., Karovičová, J., & Greifová, M. (2006). Lactic acid fermentation of some vegetable juices. Journal of Food and Nutrition Research, 45(3), 115-119. doi: 10.17221/3878-HORTSCI DOI: https://doi.org/10.17221/3878-HORTSCI

Korakli, M., & Vogel, R. F. (2006). Structure/function relationship of homopolysaccharide producing glycansucrases and therapeutic potential of their synthesised glycans. Applied Microbiology and Biotechnology, 71(6), 790-803. doi: 10.1007/s00253-006-0469-4. DOI: https://doi.org/10.1007/s00253-006-0469-4

Korakli, M., Pavlovic, M., Gänzle, M. G., & Vogel, R. F. (2003). Exopolysaccharide and kestose production by Lactobacillus sanfranciscensis LTH2590. Applied and Environmental Microbiology, 69(4), 2073-2079. doi: 10.1128/AEM.69.4.2073-2079.2003 DOI: https://doi.org/10.1128/AEM.69.4.2073-2079.2003

Kotovicz, V. (2011). Otimização da desidratação osmótica e secagem do yacon (Polymnia sonchifolia). Dissertação de mestrado, Tecnologia de Alimentos, Universidade Federal do Paraná, Curitiba, PR, Brasil.

Krüger, R., Kempka, A. P., Oliveira, D., Valduga, E., Cansian, R. L., Treichel, H., & Di Luccio, M. (2008). Desenvolvimento de uma bebida láctea probiótica utilizando como substratos soro de leite e extrato hidrossolúvel de soja. Alimentos e Nutrição, 19(1), 43-53.

Lachman, J., Fernández, E. C., & Orsák, M. (2003) Yacon [Smallanthus sonchifolia (Poepp. et Endl.) H. Robinson] chemical composition and use-a review. Plant Soil and Environment, 49(6),283-290. doi: 10.17221/4126-PSE DOI: https://doi.org/10.17221/4126-PSE

Lago, C. C., & Noreña, C. P. Z. (2017). Thermodynamic and kinetics study of phenolics degradation and color of yacon (Smallanthus sonchifolius) microparticles under accelerated storage conditions. Journal of Food Science and Technology, 54(13), 4197-4204. doi: 10.1007/s13197-017-2887-y DOI: https://doi.org/10.1007/s13197-017-2887-y

Lewu, M. N., Adebola, P. O., & Afolayan, A. J. (2010). Comparative assessment of the nutritional value of commercially available cocoyam and potato tubers in South Africa. Journal of Food Quality, 33(4), 461-476. doi: 10.1111/j.1745-4557.2010.00325.x DOI: https://doi.org/10.1111/j.1745-4557.2010.00325.x

Lopes, R. V. V., Rocha, A. S., Silva, F. L. H., & Gouveia, J. P. G. (2005). Aplicação do planejamento fatorial para otimização do estudo da produção de fermentado do fruto da palma forrageira. Revista Brasileira de Produtos Agroindustriais, 7(5), 25-32. doi: 10.1590/S0100-40422008000500024 DOI: https://doi.org/10.15871/1517-8595/rbpa.v7n1p25-32

López-López, M., Veja-Espinoza, A., Ayón-Reyna, L., LópezValenzuela, J., & Veja-Garcia, M. (2013). Combined effect of hot water dipping treatment, N-acetylcysteine and calcium on quality retention and enzymatic activity of fresh-cut apple. Journal of Food, Agriculture & Environment, 11(2), 243-248. doi: 10.1234/4.2013.4257

Macfarlane, S., Macfarlane, G. T., & Cummings, J. H. (2006). Prebiotics in the gastrointestinal tract. Alimentary Pharmacology & Therapeutics, 24(5), 701-714. doi: 10.1111/j.1365-2036.2006.03042.x DOI: https://doi.org/10.1111/j.1365-2036.2006.03042.x

Madigan, M. T., Martinko, J. M., Dunlap, P. V., & Clark, D. P. (2010). Microbiologia de brock (12nd. ed.). Ed. Artmed.

Malang, S. K., Maina, N. H., Schwab, C., Tenkanen, M., & Lacroix, C. (2015). Characterization of exopolysaccharide and ropy capsular polysaccharide formation by Weissella. Food Microbiology, 46, 418-427. doi: 10.1016/j.fm.2014.08.022 DOI: https://doi.org/10.1016/j.fm.2014.08.022

Malik, A., Radji, M., Kralj, S., & Dijkhuizen, L. (2009). Screening of lactic acid bacteria from Indonesia reveals glucansucrase and fructansucrase genes in two different Weissella confusa strains from soya. FEMS Microbiology Letters, 300(1), 131-138. doi: doi.org/10.1111/j.1574-6968.2009.01772.x DOI: https://doi.org/10.1111/j.1574-6968.2009.01772.x

Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American Journal of Clinicanl Nutrition, 79, (5) 727-747. doi: 10.1093/ajcn/79.5.727 DOI: https://doi.org/10.1093/ajcn/79.5.727

Marcon, L. D. N., Moraes, L. F. S., Cruz, B. C. S., Teixeira, M. D. O., Bruno, T. C. V., Ribeiro, I. E., Marshall, M. R., Kim, J., & Wei, C. I. (2000). Enzymatic browning in fruits, vegetables and seafoods. FAO: Food Science and Human Nutrition.

Maruyama, L. Y., Cardarelli, H. R., Buriti, F. C. A., & Saad, S. M. I. (2006). Textura instrumental de queijo petit-suisse potencialmente probiótico: Influência de diferentes combinações de gomas. Ciência e Tecnologia de Alimentos, 26(2), 386-393. doi: 10.1590/S0101-20612006000200022 DOI: https://doi.org/10.1590/S0101-20612006000200022

Mattila-Sandholm, T., Myllärinen, P., Crittenden, R., Mogensen, G., Fondén, R., & Saarela, M. (2002). Technological challenges for future probiotic foods. International Dairy Journal, 12(2), 173-182. doi: 10.1016/S0958-6946(01)00099-1 DOI: https://doi.org/10.1016/S0958-6946(01)00099-1

Matusek, A., Merész, P., Le, T. K. D., & Örsi, F. (2009). Effect of temperature and pH on the degradation of fructo-oligosaccharides. European Food Research and Technology, 228(3), 355-365. doi: 10.1007/s00217-008-0941-8 DOI: https://doi.org/10.1007/s00217-008-0941-8

Mizobutsi, G. P., Finger, F. L., Ribeiro, R. A., Puschmann, R., Neves, L. L. M., & Mota, W. F. (2010). Effect of pH and temperature on peroxidase and polyphenoloxidase activities of litchi pericarp. Scientia Agricola, 67(2), 213-217. doi: 10.1590/s0103-90162010000200013 DOI: https://doi.org/10.1590/S0103-90162010000200013

Monsan, P., Bozonnet, S., Albenne, C., Joucla, G., Willemot, R. M., & Remaud-Siméon, M. (2001). Homopolysaccharides from lactic acid bacteria. International Dairy Journal, 11(9), 675-685. doi: 10.1016/S0958-6946(01)00113-3 DOI: https://doi.org/10.1016/S0958-6946(01)00113-3

Moreno, J., & Peinado, R. (2012). Enological chemistry. Academic Press.

Muniz, C. R., Borges, M. F., Abreu, F. A. P., Nassu, R. T., & Freitas, C. A. S. (2002). Bebidas fermentadas a partir de frutos tropicais. Boletim do Centro de Pesquisa e Processamento de Alimentos, 20(2), 309-322. doi: 10.5380/cep.v20i2.1256 DOI: https://doi.org/10.5380/cep.v20i2.1256

Nicolas, J., Cheynier, V., Fleuriet, A., & Rouet-Mayer, M.-A. (1993). Polyphenols and enzymatic browning. Polyphenolic phenomena (pp. 165-175). Paris.

Ojansivu, I., & Lucia, C. (2011). Yacon, a new source of prebiotic oligosaccharides with a history of safe use. Trends in Food Science & Technology, 22(1), 40-46. doi: 10.1016/j.tifs.2010.11.005 DOI: https://doi.org/10.1016/j.tifs.2010.11.005

Olthof, M. R., Hollman, P. C. H., & Katan, M. B. (2001). Chlorogenic acid and caffeic acid are absorbed in humans. The Journal of Nutrition, 131(1), 66-71. doi: 10.1093/jn/131.1.66 DOI: https://doi.org/10.1093/jn/131.1.66

Paula, B. D., Carvalho, C. D ., Matta, V. M. D., Menezes, J. D. S., Lima, P. D. C., Pinto, C. O., & Conceição, L. E. M. G. (2012). Produção e caracterização físico-química de fermentado de umbu. Ciência Rural, 42(9), 1688-1693. doi: 10.1590/S0103-84782012000900027 DOI: https://doi.org/10.1590/S0103-84782012000900027

Pedreschi, R., Campos, D., Naratto, G., Chirinos, R., & Cisneros-Zevallos, L. (2003). Andean Yacon root (Smallanthus sonchifolius Poepp. Endl) fructooligosaccharides as a potential novel source of prebiotics. Journal of Agricultural and Food Chemistry, 51(18), 5278-84. doi: 10.1021/jf0344744 DOI: https://doi.org/10.1021/jf0344744

Pereira, D. I. A., & Gibson, G. R. (2002). Effects of consumption of probiotics and prebiotics on serum lipid levels in humans. Critical Reviews in Biochemistry and Molecular Biology, 37(4), 259-281. doi: 10.1080/ 10409230290771519 DOI: https://doi.org/10.1080/10409230290771519

Pereira, J. A. R., Barcelos, M. F. P., Pereira, M. C. A., & Ferreira, E. B. (2013). Studies of chemical and enzymatic characteristics of yacon (Smallanthus sonchifolius) and its flours. Food Science and Technology, 33(1), 75-83. doi: 10.1590/S0101-20612013005000020 DOI: https://doi.org/10.1590/S0101-20612013005000020

Pereira, J. A. R., Teixeira, M. C., Saczk, A. A., Barcelos, M. F. P., Oliveira, M. F., & Abreu, W. C. (2016). Total antioxidant activity of yacon tubers cultivated in Brazil. Ciência e Agrotecnologia, 40(5), 596-605. doi: 10.1590/1413-70542016405009416 DOI: https://doi.org/10.1590/1413-70542016405009416

Queiroz, C., Silva, A. J. R. da, Lopes, M. L. M., Fialho, E., & Valente-Mesquita, V. L. (2011). Polyphenol oxidase activity, phenolic acid composition and browning in cashew apple (Anacardium occidentale, L.) after processing. Food Chemistry, 125(1), 128-132. doi: 10.1016/J.FOODCHEM.2010.08.048 DOI: https://doi.org/10.1016/j.foodchem.2010.08.048

Rechner, A. R., Kuhnle, G., Bremner, P., Hubbard, G. P., Moore, K. P., & Rice-Evans, C. A. (2002). The metabolic fate of dietary polyphenols in humans. Free Radical Biology and Medicine, 33(2), 220-235. doi: 10.1016/s0891-5849(02)00877-8 DOI: https://doi.org/10.1016/S0891-5849(02)00877-8

Reina, L. D., Pérez-Díaz, I. M., Breidt, F., Azcarate-Peril, M. A., Medina, E., & Butz, N. (2015). Characterization of the microbial diversity in yacon spontaneous fermentation. International Journal of Food Microbiology, 203, 35-40. doi: 10.1016/j.ijfoodmicro.2015.03.007 DOI: https://doi.org/10.1016/j.ijfoodmicro.2015.03.007

Ricarte, D., Júlio, B. L. A., Zocateli, G. A. F., Barreto, R. L. F., Guimarães, M., Ferreira, R. S., & Guimarães, N. S. (2020). Análise sensorial de preparações com batata yacon: revisão sistemática. HU Revista, 45(4), 431-440. doi: 10.34019/1982-8047.2019.v45.28419 DOI: https://doi.org/10.34019/1982-8047.2019.v45.28419

Rizzon, L. A., Bernardi, J., & Miele, A. (2005). Características analíticas dos sucos de maçã Gala, Golden Delicious e Fuji. Food Science and Technology, 25(4), 750-756. doi: 10.1590/S0101-20612005000400020 DOI: https://doi.org/10.1590/S0101-20612005000400020

Rocha, W. S., Lopes, R. M., Silva, D. B., Vieira, R. F., Silva, J. P., & Agostini-Costa, T. S. (2011). Total phenolics and condensed tannins in native fruits from brazilian savanna. Revista Brasileira de Fruticultura, 33(4), 1215-1221. doi: 10.1590/S0100-29452011000400021 DOI: https://doi.org/10.1590/S0100-29452011000400021

Rodrigues, A. M., & Sant’Anna, E. S. (2001). Efeito do cloreto de sódio na produção de proteínas (Saccharomyces cerevisiae) em fermentação semi-sólida. Food Science and Technology, 121(1), 57-62. doi: 10.1590/S0101-20612001000100013 DOI: https://doi.org/10.1590/S0101-20612001000100013

Rodrigues, O. R. L., Asquieri, E. R., & Orsi, D. C. (2014). Prevention of enzymatic browning of yacon flour by the combined use of anti-browning agents and the study of its chemical composition. Food Science and Technology, 34(2), 275-280. doi: 10.1590/fst.2014.0045 DOI: https://doi.org/10.1590/fst.2014.0045

Rodríguez, H., Curiel, J.A., Landete, J.M., Rivas, B., Felipe., F.L., Gómez-Cordovés, C., & Muñoz, R. (2009a). International journal of food microbiology food phenolics and lactic acid bacteria. International Journal of Food Microbiology, 132(2-3), 79-90. doi: 10.1016/j.ijfoodmicro.2009.03.025

Rodríguez, H., Curiel, J. A., Landete, J. M., Rivas, B., Felipe, F. L., Gómez-Cordovés, C., Mancheño, J. M., & Muñoz, R. (2009b). Food phenolics and lactic acid bacteria. International Journal of Food Microbiology, 132(2-3), 79-90. doi: 10.1016/j.ijfoodmicro.2009.03.025 DOI: https://doi.org/10.1016/j.ijfoodmicro.2009.03.025

Rosa, J. S., Godoy, R. L. O., Oiano, J., Neto, Campos, R. S., Matta, V. M., Freire, C. A., Silva, A. S., & Souza, R. S. (2007). Desenvolvimento de um método de análise de vitamina C em alimentos por cromatografa líquida de alta eficiência e exclusão iônica. Food Science and Technology, 27(4), 837-846. doi: 10.1590/S0101-20612007000400025 DOI: https://doi.org/10.1590/S0101-20612007000400025

Russo, D., Valentão, P., Andrade, P. B., Fernandez, E. C., & Milella, L. (2015). Evaluation of antioxidant, antidiabetic and anticholinesterase activities of Smallanthus sonchifolius landraces and correlation with their phytochemical profiles. International Journal of Molecular Sciences, 16(8), 17696-17718. doi: 10. 3390/ijms160817696 DOI: https://doi.org/10.3390/ijms160817696

Saha, B. C., & Racine, F. M. (2011). Biotechnological production of mannitol and its applications. Applied Microbiology and Biotechnology, 89(4), 879-891. doi: 10.1007/s00253-010-2979-3 DOI: https://doi.org/10.1007/s00253-010-2979-3

Santana, I., & Cardoso, M. H. (2008). Raiz tuberosa de yacon (Smallanthus sonchifolius): potencialidade de cultivo, aspectos tecnológicos e nutricionais. Ciência Rural, 38(3), 898-905. doi: 10.1590/S0103-84782008000300050 DOI: https://doi.org/10.1590/S0103-84782008000300050

Sekwati-Monang, B., & Gänzle, M. G. (2011). Microbiological and chemical characterisation of ting, a sorghum-based sourdough product from Botswana. International Journal of Food Microbiology, 150(2-3), 115-121. doi:10.1016/j.ijfoodmicro.2011.07.021 DOI: https://doi.org/10.1016/j.ijfoodmicro.2011.07.021

Sellés-Marchart, S., Casado-Vela, J., & Bru-Martínez, R. (2006). Isolation of a latent polyphenol oxidase from loquat fruit (Eriobotrya japonica Lindl.): Kinetic characterization and comparison with the active form. Archives of Biochemistry and Biophysics, 446(2), 175-185. doi: 10.1016/j.abb.2005.12.004 DOI: https://doi.org/10.1016/j.abb.2005.12.004

Silva, C. F., Vilela, D. M., Cordeiro, C. S., Duarte, W. F., Dias, D. R., & Schwan, R. F. (2013). Evaluation of a potential starter culture for enhance quality of coffee fermentation. World Journal of Microbiology and Biotechnology, 29(2013), 235-247. doi: 10.1007/s11274-012-1175-2 DOI: https://doi.org/10.1007/s11274-012-1175-2

Silva, M. D. F., Dionísio, A. P., Carioca, A. A. F., Adriano, L. S., Pinto, C. O., Abreu, F. A. P., Wurlitzer, N. J., Araújo, I. M., Garruti, D. S., & Pontes, D. F. (2017). Yacon syrup: food applications and impact on satiety in healthy volunteers. Food Research International, 100(1), 460-467. doi: 10.1016/j.foodres.2017.07.035 DOI: https://doi.org/10.1016/j.foodres.2017.07.035

Silva, M. L. C., Costa, R. S., Santana, A. S., & Koblitz, M. G. B. (2010). Compostos fenólicos, carotenóides e atividade antioxidante em produtos vegetais. Semina: Ciências Agrárias, 31(3), 669-681. doi: 10.5433 /1679-0359.2010v31n3p669 DOI: https://doi.org/10.5433/1679-0359.2010v31n3p669

Simonovska, B., Vovk, I., Andrenšek, S., Valentová, K., & Ulrichová, J. (2003). Investigation of phenolic acids in yacon (Smallanthus sonchifolius) leaves and tubers. Journal of Chromatography A, 1016(1), 89-98. doi: 10.1016/S0021-9673(03)01183-X DOI: https://doi.org/10.1016/S0021-9673(03)01183-X

Svensson, L., Sekwati-Monang, B., Lutz, D. L., Schieber, A., & Ganzle, M. G. (2010). Phenolic acids and flavonoids in nonfermented and fermented red sorghum (Sorghum bicolor (L.) Moench). Journal of Agricultural and Food Chemistry, 58(16), 9214-9220. doi: 10.1021/jf101504v DOI: https://doi.org/10.1021/jf101504v

Taamalli, A., Contreras, M. D. M., Abu-Reidah, I. M., Trabelsi, N., & Ben Youssef, N. (2019). Quality of phenolic compounds: occurrence, health benefits, and applications in food industry. Journal of Food Quality, 2019, 1-2. doi: 10.1155/2019/9594646 DOI: https://doi.org/10.1155/2019/9594646

Takenaka, M., Yan, X., Ono, H., Yoshida, M., Nagata, T., & Nakanishi, T. (2003). Caffeic acid derivatives in the roots of yacon (Smallanthus sonchifolius). Journal of Agricultural and Food Chemistry, 51(3), 793-796. doi: 10.1021/jf020735i DOI: https://doi.org/10.1021/jf020735i

Tieking, M., Korakli, M., Ehrmann, M. A., Gänzle, M. G., & Vogel, R. F. (2003). In situ production of EPS by intestinal and cereal isolates of lactic acid bacteria during sourdough fermentation. Applied Environmental Microbiology, 69(2), 945-952. doi: 10.1128/aem.69.2.945-952.2003 DOI: https://doi.org/10.1128/AEM.69.2.945-952.2003

Topolska, K., Filipiak-Florkiewicz, A., Florkiewicz, A., & Cieslik, E. (2017). Fructan stability in strawberry sorbets in dependence on their source and the period of storage. European Food Research and Technology, 243, 701-709. doi: 10.1007/s00217-016-2783-0 DOI: https://doi.org/10.1007/s00217-016-2783-0

Valentová, K., & Ulrichová, J. (2003). Smallanthus sonchifolius and Lepidium meyenii - prospective Andean crops for the prevention of chronic diseases. Biomedical Papers, 147(2), 119-130. PMID: 15037892 DOI: https://doi.org/10.5507/bp.2003.017

Van Hijum, S. A. F. T., Bonting, K., van der Maarel, M. J. E. C., & Dijkhuizen, L. (2001). Purification of a novel fructosyltransferase from Lactobacillus reuteri strain 121 and characterization of the levan produced. FEMS Microbiology Letters, 205(2), 323-328. doi: 10.1111/j.1574-6968.2001.tb10967.x DOI: https://doi.org/10.1111/j.1574-6968.2001.tb10967.x

Van Hijum, S., Van Geel-Schutten, G. H., Rahaoui, H., Van Der Maarel, M., & Dijkhuizen, L. (2002). Characterization of a novel fructosyltransferase from Lactobacillus reuteri that synthesizes high-molecular-weight inulin and inulin oligosaccharides. Applied and Environmental Microbiology, 68(9), 4390-4398. doi:10.1128/AEM.68.9.4390-4398.2002 DOI: https://doi.org/10.1128/AEM.68.9.4390-4398.2002

Vanini, M., Barbieri, R. L., Ceolin, T., Heck, R. M., & Mesquita, M. K. (2009). A relação do tubérculo andino yacon com a saúde humana. Ciência, Cuidado e Saúde, 8, 92-96. doi: 10.4025/cienccuidsaude.v8i0.9723 DOI: https://doi.org/10.4025/cienccuidsaude.v8i0.9723

Vasconcelos, C. M., Oliveira, E. B., Rossi, S. N., Arantes, L. F., Puschmann, R., & Chaves, J. B. P. (2015). Evaluating strategies to control enzymatic browning of minimally processed yacon (Smallanthus sonchifolius). Food Bioprocess Technology, 8(9), 1982-1994. doi: 10.1007/s11947-015-1558-0 DOI: https://doi.org/10.1007/s11947-015-1558-0

Vega, R., & Zuniga-Hansen, M. E. (2015). The effect of processing conditions on the stability of fructooligosaccharides in acidic food products. Food Chemistry, 173(15), 784-789. doi: 10.1016/j.foodchem.2014.10.119 DOI: https://doi.org/10.1016/j.foodchem.2014.10.119

Vilhena, S. M. C., Câmara, F. L. A., & Kakihara, S. T. (2000). O cultivo de yacon no Brasil. Horticultura Brasileira, 18(1), 5-8. doi: 10.1590/S0102-05362000000100002 DOI: https://doi.org/10.1590/S0102-05362000000100002

Watt, B. K., & Merrill, A. L. (1964). Composition of foods: raw, processed, prepared. (Agricultural Research Service, 198, Agriculture Handbook, 8). Consumer and Food Economics Research Division.

Whitaker, J. R., & Lee, C. Y. (1995). Recent advances in chemistry of enzymatic browning: an overview. In C. Y. Lee, & J. R. Whitaker (Eds.), Enzymatic browning and its prevention (pp. 2-7). Washington, ACS: Symp.Ser.600. DOI: https://doi.org/10.1021/bk-1995-0600.ch001

Yan, M. R., Welch, R., Rush, E. C., Xiang, X., & Wang, X. (2019). A sustainable wholesome foodstuff; health effects and potential dietotherapy applications of yacon. Nutrients, 11(11), 1-16. doi: 10.3390/nu11112632 DOI: https://doi.org/10.3390/nu11112632

Yoon, K. Y., Woodams, E. E., & Hang, Y. D. (2006). Production of probiotic cabbage juice by lactic acid bacteria. Bioresource Technology, 97(12), 1427-1430. doi: 10.1016/j.biortech.2005.06.018 DOI: https://doi.org/10.1016/j.biortech.2005.06.018

Downloads

Publicado

2024-02-20

Como Citar

Souza, C. P. G. de, Pretti, A. C. F., Souza, L. C. da S., Nogueira, L. S., Gomes, A. C. B., Scherer, R., … Mileib Vasconcelos, C. (2024). Bebida de yacon (Smallanthus sonchifolius) fermentada espontaneamente . Semina: Ciências Agrárias, 45(1), 131–156. https://doi.org/10.5433/1679-0359.2024v45n1p131

Edição

Seção

Artigos

Artigos Semelhantes

1 2 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.