Metaphylactic effect of diphenyl diselenide (PhSe)2 on the health of beef female calves subjected to conventional weaning
DOI:
https://doi.org/10.5433/1679-0359.2023v44n6p2207Keywords:
Beef cattle farming, Oxidative status, Performance, Selenium.Abstract
The objective of this study was to evaluate the impact of diphenyl diselenide (PhSe)2 on the average daily gain, biochemical parameters, and oxidative status of beef calves subjected to conventional weaning. Thirty female calves, aged six months and weighing 152.42±13.75 kg, were used. The experiment was laid out in a completely randomized design, with the experimental units divided into three groups: control group (n=10): 2 mL of NaCl solution; dimethyl sulfoxide group (n=10): 2 mL of dimethyl sulfoxide; and diphenyl diselenide group (n=10): 3 µmol kg-1 of (PhSe)2 diluted in 2 mL of dimethyl sulfoxide. Collections and evaluations were conducted at the following time points: -28 (baseline, T1) and -14 (T2) days before weaning; on the initial day of weaning (day 0, T3); and 14 (T4) and 28 (T5) days after weaning. Treatments at T1, T2, and T3 were administered subcutaneously. All animals were subjected to similar handling and feeding conditions throughout the experiment, with free access to water. The assessed parameters included average daily gain, total protein, albumin, globulin, albumin:globulin ratio, reduced glutathione, thiobarbituric acid reactive substances, and total antioxidant capacity determined by the ferric reducing antioxidant power. Among the evaluated parameters, significant differences (P<0.05) were observed in average daily gain according to time points; albumin according to treatments, time points, and treatment × time interaction; globulins according to time points and treatment × time interaction; albumin:globulin ratio according to time points and treatment × time interaction; reduced glutathione according to time points and treatment × time interaction; and ferric reducing antioxidant potential according to time points. The administration of diphenyl diselenide to beef female calves resulted in an increase in albumin, globulin, albumin:globulin ratio, and reduced glutathione during conventional weaning. The beneficial effect of diphenyl diselenide was verified by the treatment × time interactions. These results demonstrate that diphenyl diselenide serves as an alternative to traditional sources of organic selenium, and its use mitigates the challenges faced by beef calves during conventional weaning.
Downloads
References
Amorim, L. S., Torres, C. A. A., Moraes, E. A., Silva, J. M., Fº., & Guimarães, J. D. (2007). Perfil metabólico de touros da raça Nelore (Bos taurus indicus) confinados e tratados com somatotrofina bovina recombinante (r-bST). Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 59(2), 434-442. doi: 10.1590/S0102-09352007000200025
Barcellos, J. O. J., Lima, J. A., Zago, D., Fagundes, H. X., & Lima, V. (2019). Bovinocultura de corte: cadeia produtiva e sistemas de produção (2a ed.). Agrolivros.
Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Analytical Biochemistry, 239(1), 70-76. doi: 10.1006/abio.1996. 0292
Biazus, A. H., Cazarotto, C. J., Machado, G., Bottari, N. B., Alves, M. S., Morsch, V. M., Schetinger, M. R. C., Leal, M. L. R., Fernandes, N. F., Moresco, R. N., Baldissera, M. D., & Silva, A. S. da. (2018). Diphenyl diselenide subcutaneous supplementation of dairy sheep: effects on oxidant and antioxidant status, inflammatory response and milk composition. Animal Production Science, 59(3), 461-470. doi: 10.1071/AN17374
Ceciliani, F., Ceron, J. J., Eckersall, P. D., & Sauerwein, H. (2012). Acute phase proteins in ruminants. Journal of Proteomics, 75(14), 4207-4231. doi: 10.1016/j.jprot.2012.04.004
Celi, P. (2011). Biomarkers of oxidative stress in ruminant medicine. Immunpharmacology and Immunotoxicology, 33(2), 233-240. doi: 10.3109/08923973.2010.514917
Chirase, N. K., Greene, L. W., Purdy, C. W., Loan, R. W., Auvermann, B. W., Parker, D. B., Walborg, E. F., Jr., Stevenson, D. E., Xu, Y., & Klaunig, J. E. (2004). Effect of transport stress on respiratory disease, serum antioxidant status, and serum concentrations of lipid peroxidation biomarkers in beef cattle. American Journal of Veterinary Research, 65(6), 860-864. doi: 10.2460/ajvr.2004.65.860
Cody, R. (2015). An introduction to SAS university edition. SAS Institute.
Combs, G. F., Jr. (2015). Biomarkers of selenium status. Nutrients, 7(4), 2209-2236. doi: 10.3390/nu7042209
Dröge, W., Osthoff, K. S, Mihm, S., Galter, D., Schenk, H., Eck, H. P., Roth, S., & Gmünder, H. (1994). Functions of glutathione and glutathione disulfide in immunology and immunopathology. The FASEB Journal, 8(14), 1131-1138. doi: 10.1096/fasebj.8.14.7958618
Eitam, H., Vaya, J., Brosh, A., Orlov, A., Khatib, S., Izhaki, I., & Shabtay, A. (2010). Differential stress responses among newly received calves: variations in reductant capacity and Hsp gene expression. Cell Stress and Chaperones, 15(6), 865-876. doi: 10.1007/s12192-010-0195-9
Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70-77. doi: 10.1016/0003-9861(59)90090-6
Enríquez, D. H., Ungerfeld, R., Quintans, G., Guidoni, A. L., & Hötzel, M. J. (2010). The effects of alternative weaning methods on behaviour in beef calves. Livestock Science, 128(1-3), 20-27. doi: 10.1016/j.livsci.2009.10.007
Ganie, A. A., Baghel, R. P. S., Mudgal, V., & Sheikh, G. G. (2010). Effect of selenium supplementation on growth and nutrient utilization in buffalo heifers. Animal Nutrition and Feed Technology, 10(2), 255-259.
Georgieva, N. V. (2005). Oxidative stress as a factor of disrupted ecological oxidative balance in biological systems a review. Bulgarian Journal of Veterinary Medicine, 8(1), 1-11.
Ghiselli, A., Serafini, M., Natella, F., & Scaccini, C. (2000). Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radical Biology and Medicine, 29(11), 1106-1114. doi: 10.1016/S0891-5849(00)00394-4
González, F. H. D., & Silva, S. C. (2017). Introdução à bioquímica clínica veterinária (3a ed.). Editora da UFRGS.
Gottshall, C. S. (2009). Desmame de bezerros de corte. Como? Quando? Por que? (2a ed.). Agrolivros.
Hall, J. A., Bobe, G., Hunter, J. K., Vorachek, W. R., Stewart, W. C., Vanegas, J. A., Estill, C. T., Mosher, W. D., & Pirelli, G. J. (2013a). Effect of feeding selenium-fertilized alfalfa hay on performance of weaned beef calves. PLoS One, 8(3), 1-8. doi: 10.1371/journal.pone.0058188
Hall, J. A., Bobe, G., Vorachek, W. R., Hugejiletu, Gorman, M. E., Mosher, W. D., & Pirelli, G. J. (2013b). Effects of feeding selenium-enriched alfalfa hay on immunity and health of weaned beef calves. Biological Trace Element Research, 156(1-3), 96-110. doi: 10.1007/s12011-013-9843-0
Halliwell, B., & Gutteridge, J. M. C. (1989). Free radicals in biology and medicine. University Press.
Herz, A., & Hod, I. (1969). The albumin/alpha globulin ratio in various physiological states in cattle. British Veterinary Journal, 125(7), 326-329. doi: 10.1016/S0007-1935(17)48859-2
Hickey, M. C., Drennan, M., & Earley, B. (2003). The effect of abrupt weaning of suckler calves on the plasma concentrations of cortisol, catecholamines, leukocytes, acute-phase proteins and in vitro interferon-gamma production. Journal of Animal Science, 81(11), 2847-2855. doi: 10.2527/2003.81112847x
Inanami, O., Shiga, A., Okada, K., Sato, R., Miyake, Y., & Kuwabara, M. (1999). Lipid peroxides and antioxidants in serum of neonatal calves. American Journal of Veterinary Research, 60(4), 452-457.
Jain, N. C. (1986). Schalm's veterinary hematology (4nd ed.). Lea & Febiger.
Kaneko, J. J., Harvey, J. W., & Bruss, M. L. (2008). Clinical biochemistry of domestic animals (6nd ed.). Academic Press.
Leal, M. L. R., Rocha, J. B. T., Corte, C. L. D., Aires, A. R., Rocha, J. F. X., Zanatta, R. S., Carpes, J. L. S., Szinwelski, G. A., Stefanello, S., & Pivoto, F. L. (2018). Distribution of selenium in sheep treated with dipheny diselenide. Brazilian Archive of Veterinary Medicine and Animal Science, 70(4), 1017-1022. doi: 10.1590/1678-4162-9790
Lobanov, A. V., Hatfield, D. L., & Gladyshev, V. N. (2009). Eukaryotic selenoproteins and selenoproteomes. Biochimica et Biophysica Acta, 1790(11), 1424-1428. doi: 10.1016/j.bbagen.2009.05.014
López-González, F. A., Allende, R., Lima, J. M. S. de, Canozzi, M. E. A., Sessim, A. G., & Barcellos, J. O. J. (2020). Intensification of cow-calf production: How does the system respond biologically to energy inputs in a long-term horizon?. Livestock Science, 237(104058), 1-13. doi: 10.1016/j.livsci.2020.104058
Lykkesfeldt, J., & Svendsen, O. (2007). Oxidants and antioxidants in disease: oxidative stress in farm animals. The Veterinary Journal, 173(3), 502-511. doi: 10.1016/j.tvjl.2006.06.005
Lynch, E., McGee, M., & Earley, B. (2019). Weaning management of beef calves with implications for animal health and welfare. Journal of Applied Animal Research, 47(1), 167-175. doi: 10.1080/09712119. 2019. 1594825
Mehdi, Y., & Dufrasne, I. (2016). Selenium in cattle: a review. Molecules, 21(4), 1-14. doi: 10.3390/molecules21040545
Meotti, F. C., Stangherlin, E. C., Zeni, G., Nogueira, C. W., & Rocha, J. B. T. (2004). Protective role of aryl and alkyl diselenides on lipid peroxidation. Environmental Research, 94(3), 276-282. doi: 10.1016/S 0013-9351(03)00114-2
Miller, J. K., Brzezinska-Slebodzinska, E., & Madsen, F. C. (1993). Oxidative stress, antioxidants, and animal function. Journal of Dairy Science, 76(9), 2812-2823. doi: 10.3168/jds.S0022-0302(93)77620-1
National Research Council (2016). Nutrient requirements of beef cattle (8nd ed.). National Academies Press.
Neiva, R. S. (2013). Criação eficiente de bezerras e novilhas uma abordagem prática.
Nogueira, C. W., & Rocha, J. B. T. (2010). Diphenyl diselenide a janus-faced molecule. Journal of the Brazilian Chemical Society, 21(11), 2055-2071. doi: 10.1590/S0103-50532010001100006
Nogueira, C. W., Zeni, G., & Rocha, J. B. (2004). Organoselenium and organotellurium compounds: toxicology and pharmacology. Chemical Reviews, 104(12), 6255-6286. doi: 10.1021/cr0406559
Ohkawa, K. (1979). Promotion of renewal canes in greenhouse roses by 6-benzylamino purine without cutback1. HortScience, 14(5), 612-613. doi: 10.21273/HORTSCI.14.5.612
Orihuela, A., & Galina, C. S. (2019). Effects of separation of cows and calves on reproductive performance and animal welfare in tropical beef cattle. Animals, 9(5), 1-13. doi: 10.3390/ani9050223
Orlandi, T., Pozo, C. A., Mezzomo, M. P., & Kozloski, G. V. (2020). Acacia mearnsii tannin extract as a feed additive: impact on feed intake, digestibility and nitrogen excretion by sheep fed a tropical grass-based diet. Ciência Rural, 50(9), 1-6. doi: 10.1590/0103-8478cr20200095
Prauchner, C. A. (2014). A importância do selênio para a agropecuária e saúde humana. Editora da UFSM.
Pregel, P., Bollo, E., Cannizzo, F. T., Biolatti, B., Contato, E., & Biolatti, P. G. (2005). Antioxidant capacity as a reliable marker of stress in dairy calves transported by road. Veterinary Record, 156(2), 53-54. doi: 10.1136/vr.156.2.53
Ribeiro, S. M. R., Queiroz, J. H. de, Peluzio, M. D. C. G., Costa, N. M. B., Matta, S. L. P. da, & Queiroz, M. E. L. R. de. (2005). A formação e os efeitos das espécies reativas de oxigênio no meio biológico. Bioscience Journal, 21(3), 133-149.
Rodrigues, C. M., Schneider, M., Oliveira, J. S. de, Collet, S. G., Camillo, G., Duarte, M. M. M. F., Rocha, J. B. T. da, Andrade, C. M. de, Blagitz, M. G., & Leal, M. L. R. (2020). Does diphenyl diselenide metaphylaxis increase weight gain and immunoglobulin G in Holstein calves from the neonatal period to weaning?. Agrarian Academic Journal, 3(3), 49-61. doi: 10.32406/v3n32020/49-61/agrariacad
Rooke, J. A., Robinson, J. J., & Arthur, J. R. (2004). Effects of vitamin E and selenium on the performance and immune status of ewes and lambs. The Journal of Agricultural Science, 142(3), 253-262. doi: 10.1017/S0021859604004368
Russell, J. R., Sexten, W. J., Kerley, M. S., & Hansen, S. L. (2016). Relationship between antioxidant capacity, oxidative stress, and feed efficiency in beef steers. Journal of Animal Science, 94(7), 2942-2953. doi: 10. 2527/jas.2016-0271
Santos, D. S., Boito, J. P., Klauck, V., Reis, J. H., Gebert, R. R., Glombowsky, P., Biazus, A. H., Bottari, N. B., Sousa, R. S., Machado, G., Leal, M. L. R., Baldissera, M. D., Berwanger, J. C., & Silva, A. S. (2019). Health benefits of subcutaneous zinc edetate and diphenyl diselenide in calves during the weaning period. Annals of the Brazilian Academy of Sciences, 91(1), 1-12. doi: 10.1590/0001-3765201920171042
Schrauzer, G. N. (2000). Selenomethionine: a review of its nutritional significance, metabolism and toxicity. The Journal of Nutrition, 130(7), 1653-1656. doi: 10.1093/jn/130.7.1653
Silva, E. B. D., Fioravanti, M. C. S., Silva, L. A. F. D., Araújo, E. G. D., Menezes, L. B. D., Miguel, M. P., & Vieira, D. (2008). Característica leucocitária, relação albumina/globulina, proteína plasmática e fibrinogênio de bovinos da raça Nelore, confinados e terminados a pasto. Ciência Rural, 38(8), 2191-2196. doi: 10.1590/S0103-84782008000800016
Suttle, N. F. (2010). Mineral nutrition of livestock (4nd ed.). Cabi Publishing.
Tzou, G. G., Everson, D. O., Bull, R. C., & Olson, D. P. (1991). Classification of beef calves as protein-deficient or thermally stressed by discriminant analysis of blood constituents. Journal of Animal Science, 69(2), 864-873. doi: 10.2527/1991.692864x
Vasconcelos, S. M. L., Goulart, M. O. F., Moura, J. B. D. F., Manfredini, V., Benfato, M. D. S., & Kubota, L. T. (2007). Espécies reativas de oxigênio e de nitrogênio, antioxidantes e marcadores de dano oxidativo em sangue humano: principais métodos analíticos para sua determinação. Química Nova, 30(5), 1323-1338. doi: 10.1590/S0100-40422007000500046
Viana, F. A. B. (2019). Guia terapêutico veterinário (4a ed.). Gráfica e Editora CEM.
Wang, C., Li, D., Yang, J., Xia, Y., Tu, Y., Branco, R., Gao, H., Diao, Q., & Mao, H. (2019). Weaning performance of beef cattle calves based on concentrate intake. Animals, 10(1), 1-12. doi: 10.3390/ani10010018
Zhang, K., Zhao, Q., Zhan, T., Han, Y., Tang, C., & Zhang, J. (2019). Effect of different selenium sources on growth performance, tissue selenium content, meat quality, and selenoprotein gene expression in finishing pigs. Biological Trace Element Research, 196(1), 463-471. doi: 10.1007/s12011-019-01949-3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Semina: Ciências Agrárias

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.











