Vigor e atividade de alfa-amilase sementes de feijão em condições de estresse salino
DOI:
https://doi.org/10.5433/1679-0359.2021v42n6SUPL2p3633Palavras-chave:
Phaseolus vulgaris L., Germinação, Vigor de plântulas.Resumo
As sementes com alto vigor possuem maior capacidade de hidrólise e mobilização das reservas armazenadas resultando na formação de plântulas vigorosas, sendo esse comportamento observado em condições de estresse abiótico. O objetivo deste trabalho foi avaliar a relação da enzima alfa-amilase em lotes de sementes de feijão com contraste no vigor quando submetidos a condições de ausência e presença de estresse salino, buscando identificar a relação desta enzima com o vigor do lote de sementes nessas condições. Sete cultivares de feijão foram utilizadas. A qualidade fisiológica foi determinada pela germinação, índice de vigor e comprimento de plântulas. A mobilização de reservas foi avaliada em condições com ausência e presença de estresse salino simulado com solução de NaCl com concentração de 50 mmol L-1. As variáveis analisadas referentes a mobilização de reservas foram a redução das reservas, taxa de redução das reservas, massa seca de plântulas, taxa de mobilização de reservas, amido, taxa de redução de amido e atividade da alfa-amilase. Os resultados demonstraram que a condição de estresse afetou negativamente todas as variáveis avaliadas, contudo, as cultivares classificadas como de maior vigor apresentaram melhor desempenho fisiológico sob o estresse. O estresse salino em sementes de feijão afeta o desempenho de plântulas e reduz a atividade da alfa-amilase durante a germinação e, os lotes de sementes com alto vigor apresentaram maior atividade da enzima em condições de ausência de estresse.Downloads
Referências
Andrade, G. C. D., Coelho, C. M. M., & Padilha, M. S. (2019). Seed reserves reduction rate and reserves mobilization to the seedling explain the vigour of maize seeds. Journal of Seed Science, 41(4), 488-497. doi: 10.1590/2317-1545v41n4227354
Baghel, L., Kataria, S., & Jain, M. (2019). Mitigation of adverse effects of salt stress on germination, growth, photosynthetic efficiency and yield in maize (Zea mays L.) through magnetopriming. Acta Agrobotanica, 72(1), 1-16. doi: 10.5586/aa.1757
Bewley, J. D., Bradford, K. J., Hilhorst, H. & Nonogaki, H. (2013). Seeds: physiology of development, germination and dormancy. New York: Springer Science & Business Media.
Caverzan, A., Giacomin, R., Müller, M., Biazus, C., Lângaro, N. C., & Chavarria, G. (2018). How does seed vigor affect soybean yield components?. Agronomy Journal, 110(4), 1318-1327. doi: 10.2134/agronj 2017.11.0670
Chen, J., Wu, J., Lu, Y., Cao, Y., Zeng, H., Zhang, Z.,... Wang, S. (2016). Molecular cloning and characterization of a gene encoding the proline transporter protein in common bean (Phaseolus vulgaris L.). The Crop Journal, 4(5), 384-390. doi: 10.1016/j.cj.2016.05.009
Chen, L. T., Sun, A. Q., Yang, M., Chen, L. L., Ma, X. L., Li, M. L., & Yin, Y. P. (2017). Relationships of wheat seed vigor with enzyme activities and gene expression related to seed germination under stress conditions. Ying yong sheng tai xue bao: The Journal of Applied Ecology, 28(2), 609-619. doi: 10.13 287/j.1001-9332.201702.019
Cheng, J., Cheng, X., Wang, L., He, Y., An, C., Wang, Z., & Zhang, H. (2015). Physiological characteristics of seed reserve utilization during the early seedling growth in rice. Brazilian Journal of Botany, 38(4), 751-759. doi: 10.1007/s40415-015-0190-6
Cheng, X., Wu, Y., Guo, J., Du, B., Chen, R., Zhu, L., & He, G. (2013). A rice lectin receptor‐like kinase that is involved in innate immune responses also contributes to seed germination. The Plant Journal, 76(4), 687-698. doi: 10.1111/tpj.12328
Cheng, X., Xiong, F., Wang, C., Xie, H., He, S., Geng, G., & Zhou, Y. (2018). Seed reserve utilization and hydrolytic enzyme activities in germinating seeds of sweet corn. Pakistan Journal of Botany, 50(1), 111-116.
Dutta, T., Neelapu, N. R. R., Wani, S. H., & Challa, S. (2018). Response of pulses to drought and salinity stress response: a physiological perspective. In: S. H. Wani, & M. Jain (Eds.), Pulse improvement (pp. 77-98). Cham: Springer.
El-Mowafy, M. R., & Kishk, A. M. S. (2017). Effect of soaking treatments and temperature during germination on germinability and rice (Oryza sativa L.) seed quality. Journal of Plant Production, 8(4), 537-540. doi: 10.21608/JPP.2017.40062
Gommers, C. M., & Monte, E. (2018). Seedling establishment: a dimmer switch-regulated process between dark and light signaling. Plant Physiology, 176(2), 1061-1074. doi: 10.1104/pp.17.01460
Henning, F. A., Mertz, L. M., Jacob-Junior, E. A., Machado, R. D., Fiss, G., & Zimmer, P. D. (2010). Composição química e mobilização de reservas em sementes de soja de alto e baixo vigor. Bragantia, 69(3), 727-733. doi: 10.1590/S0006-87052010000300026
Ibrahim, E. A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192(3), 38-46. doi: 10.1016/j.jplph.2015.12.011
International Seed Testing Association (2014). Seed vigour testing. Zurich, Switzerland: International Rules for Seed Testing.
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 1-16. doi: 10.1098/rsta.2015.0202
Kalai, T., Bouthour, D., Manai, J., Bettaieb Ben Kaab, L., & Gouia, H. (2016). Salicylic acid alleviates the toxicity of cadmium on seedling growth, amylases and phosphatases activity in germinating barley seeds. Archives of Agronomy and Soil Science, 62(6), 892-904. doi: 10.1080/03650340.2015.1100295
Krzyzanowski, F. C., França-Neto, J. B., Gomes, F. G., Jr., & Nakagawa, J. (2020). Testes de vigor baseados no desempenho das plântulas. In: F. C. Krzyzanowski, R. D. Vieira, J. B. França-Neto, J. Marcos-Filho, (Eds.), Vigor de sementes: conceitos e testes (pp. 79-140). Londrina, PR: ABRATES.
Li, J., Zhao, C., Zhang, M., Yuan, F., & Chen, M. (2019). Exogenous melatonin improves seed germination in Limonium bicolor under salt stress. Plant Signaling & Behavior, 14(11), 1659705. doi: 10.1080/155 92324.2019.1659705
Liang, W., Ma, X., Wan, P., & Liu, L. (2018). Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 495(1), 286-291. doi: 10.1016/j.bbrc.2017.11.043
Marcos-Filho, J. (2015). Seed vigor testing: an overview of the past, present and future perspective. Scientia Agricola, 72(4), 363-374. doi: 10.1590/0103-9016-2015-0007
McCready, R. M., Guggolz, J., Silviera, V., & Owens, H. S. (1950). Determination of starch and amylose in vegetables. Analytical Chemistry, 22(9), 1156-1158. doi: 10.1021/ac60045a016
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428. doi: 10.1021/ac60147a030
Ministério da Agricultura, Pecuária e Abastecimento. (2009). Regras para análise de sementes. Brasília: MAPA/ ACS. Recuperado de http://www.agricultura. gov.br/assuntos/laboratorios/arquivospublicacoes-laboratorio/regras-paraanalise-de-sementes.pdf/view
Mondo, V. H. V., Nascente, A. S., & Cardoso, M. O., Neto. (2016). Common bean seed vigor affecting crop grain yield. Journal of Seed Science, 38(4), 365-370. doi: 10.1590/2317-1545v38n4166814
Mukankusi, C., Raatz, B., Nkalubo, S., Berhanu, F., Binagwa, P., Kilango, M.,... Beebe, S. (2019). Genomics, genetics and breeding of common bean in Africa: a review of tropical legume project. Plant Breeding, 138(4), 401-414. doi: 10.1111/pbr.12573
Naguib, D. M., & Abdalla, H. (2019). Metabolic status during germination of nano silica primed Zea mays seeds under salinity stress. Journal of Crop Science and Biotechnology, 22(5), 415-423. doi: 10.1007/s 12892-019-0168-0
Oliveira, G. E., Pinho, R. G. V., Andrade, T. D., Pinho, É. V. D. R. V., Santos, C. D. D., & Veiga, A. D. (2013). Physiological quality and amylase enzyme expression in maize seeds. Ciência e Agrotecnologia, 37(1), 40-48. doi: 10.1590/S1413-70542013000100005
R Core Team (2020). R: A language and environment for statistical computing. Austria: R Foundation for Statistical Computing.
Rocha, C. R. M. D., Silva, V. N., & Cicero, S. M. (2015). Avaliação do vigor de sementes de girassol por meio de análise de imagens de plântulas. Ciência Rural, 45(6), 970-976. doi: 10.1590/0103-8478cr20 131455
Sako, Y., McDonald, M. B., Fujimura, K., Evans, A. F., & Bennett, M. A. (2001). A system for automated seed vigour assessment. Seed Science and Technology, 29(3), 625-636.
Silva, L. J. D., Medeiros, A. D. D., & Oliveira, A. M. S. (2019). SeedCalc, a new automated R software tool for germination and seedling length data processing. Journal of Seed Science, 41(2), 250-257. doi: 10. 1590/2317-1545v42n2217267
Soltani, A., Gholipoor, M., & Zeinali, E. (2006). Seed reserve utilization and seedling growth of wheat as affected by drought and salinity. Environmental and Experimental Botany, 55(1-2), 195-200. doi: 10.10 16/j.envexpbot.2004.10.012
Sun, Z., & Henson, C. A. (1991). A quantitative assessment of the importance of barley seed α-amylase, β-amylase, debranching enzyme, and α-glucosidase in starch degradation. Archives of Biochemistry and Biophysics, 284(2), 298-305. doi: 10.1016/0003-9861(91)90299-X
Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal. Porto Alegre: Artmed Editora.
Tayade, R., Kulkarni, K. P., Jo, H., Song, J. T., & Lee, J. D. (2019). Insight into the prospects for the improvement of seed starch in legume: a review. Frontiers in Plant Science, 10, 1213. doi: 10.3389/fpls. 2019.01213
Thalmann, M., & Santelia, D. (2017). Starch as a determinant of plant fitness under abiotic stress. New Phytologist, 214(3), 943-951. doi: 10.1111/nph.14491
Yu, S. M., Lo, S. F., & Ho, T. H. D. (2015). Source sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends in Plant Science, 20(12), 844-857. doi: 10.1016/j.tplants.2015.10.009
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Semina: Ciências Agrárias
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adota para suas publicações a licença CC-BY-NC, sendo os direitos autorais do autor, em casos de republicação recomendamos aos autores a indicação de primeira publicação nesta revista.
Esta licença permite copiar e redistribuir o material em qualquer meio ou formato, remixar, transformar e desenvolver o material, desde que não seja para fins comerciais. E deve-se atribuir o devido crédito ao criador.
As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário.