Vigor and alpha-amylase activity in common bean seeds under salt stress conditions

Authors

DOI:

https://doi.org/10.5433/1679-0359.2021v42n6SUPL2p3633

Keywords:

Phaseolus vulgaris L., Germination, Seedling vigor.

Abstract

Seeds with high vigor have greater capacity for hydrolysis and mobilization of stored reserves, which results in the formation of vigorous seedlings, and this behavior is observed under abiotic stress conditions. This study proposes to investigate the relationship of the enzyme alpha-amylase in lots of common-bean seeds with contrasting vigor, when subjected to the absence and presence of salt stress, aiming to identify the relationship of this enzyme with the vigor of the seed lot under these conditions. Seven common-bean cultivars were used. Physiological quality was determined by germination, vigor index and seedling length. The mobilization of reserves was evaluated under absence and presence of salt stress simulated with a NaCl solution with a concentration of 50 mmol L-1. The analyzed variables regarding reserve mobilization were reserve reduction, reserve reduction rate, seedling dry weight, reserve mobilization rate, starch, starch reduction rate and alpha-amylase activity. Results showed that the stress condition negatively affected all the evaluated variables; however, the cultivars classified as having greater vigor showed better physiological performance under stress. Salt stress in common-bean seeds affects seedling performance and reduces alpha-amylase activity during germination, and high-vigor seed lots exhibited higher enzyme activity in the no-stress condition.

Downloads

Download data is not yet available.

Author Biographies

Matheus Santin Padilha, Universidade do Estado de Santa Catarina

M.e in Plant Production, Universidade do Estado de Santa Catarina, Centro de Ciências Agroveterinárias, UDESC/ CAV, Lages, SC, Brazil.

Cileide Maria Medeiros Coelho, Universidade do Estado de Santa Catarina

Profa Dra, Department of Agronomy, UDESC/CAV, Lages, SC, Brazil.

Natalia Carolina Moraes Ehrhardt-Brocardo, Centro de Educação Santa Teresinha

Dra. in Plant Production, Centro de Educação Santa Teresinha, CEST/Sagrada, Curitibanos, SC, Brazil.

References

Adda, A., Regagba, Z., Latigui, A., & Merah, O. (2014). Effect of salt stress on α-amylase activity, sugars mobilization and osmotic potential of Phaseolus vulgaris L. seeds var.'Cocorose'and'Djadida'during germination. Journal of Biological Sciences, 14(5), 370-375. doi: 10.3923/jbs.2014.370.375

Andrade, G. C. D., Coelho, C. M. M., & Padilha, M. S. (2019). Seed reserves reduction rate and reserves mobilization to the seedling explain the vigour of maize seeds. Journal of Seed Science, 41(4), 488-497. doi: 10.1590/2317-1545v41n4227354

Baghel, L., Kataria, S., & Jain, M. (2019). Mitigation of adverse effects of salt stress on germination, growth, photosynthetic efficiency and yield in maize (Zea mays L.) through magnetopriming. Acta Agrobotanica, 72(1), 1-16. doi: 10.5586/aa.1757

Bewley, J. D., Bradford, K. J., Hilhorst, H. & Nonogaki, H. (2013). Seeds: physiology of development, germination and dormancy. New York: Springer Science & Business Media.

Caverzan, A., Giacomin, R., Müller, M., Biazus, C., Lângaro, N. C., & Chavarria, G. (2018). How does seed vigor affect soybean yield components?. Agronomy Journal, 110(4), 1318-1327. doi: 10.2134/agronj 2017.11.0670

Chen, J., Wu, J., Lu, Y., Cao, Y., Zeng, H., Zhang, Z.,... Wang, S. (2016). Molecular cloning and characterization of a gene encoding the proline transporter protein in common bean (Phaseolus vulgaris L.). The Crop Journal, 4(5), 384-390. doi: 10.1016/j.cj.2016.05.009

Chen, L. T., Sun, A. Q., Yang, M., Chen, L. L., Ma, X. L., Li, M. L., & Yin, Y. P. (2017). Relationships of wheat seed vigor with enzyme activities and gene expression related to seed germination under stress conditions. Ying yong sheng tai xue bao: The Journal of Applied Ecology, 28(2), 609-619. doi: 10.13 287/j.1001-9332.201702.019

Cheng, J., Cheng, X., Wang, L., He, Y., An, C., Wang, Z., & Zhang, H. (2015). Physiological characteristics of seed reserve utilization during the early seedling growth in rice. Brazilian Journal of Botany, 38(4), 751-759. doi: 10.1007/s40415-015-0190-6

Cheng, X., Wu, Y., Guo, J., Du, B., Chen, R., Zhu, L., & He, G. (2013). A rice lectin receptor‐like kinase that is involved in innate immune responses also contributes to seed germination. The Plant Journal, 76(4), 687-698. doi: 10.1111/tpj.12328

Cheng, X., Xiong, F., Wang, C., Xie, H., He, S., Geng, G., & Zhou, Y. (2018). Seed reserve utilization and hydrolytic enzyme activities in germinating seeds of sweet corn. Pakistan Journal of Botany, 50(1), 111-116.

Dutta, T., Neelapu, N. R. R., Wani, S. H., & Challa, S. (2018). Response of pulses to drought and salinity stress response: a physiological perspective. In: S. H. Wani, & M. Jain (Eds.), Pulse improvement (pp. 77-98). Cham: Springer.

El-Mowafy, M. R., & Kishk, A. M. S. (2017). Effect of soaking treatments and temperature during germination on germinability and rice (Oryza sativa L.) seed quality. Journal of Plant Production, 8(4), 537-540. doi: 10.21608/JPP.2017.40062

Gommers, C. M., & Monte, E. (2018). Seedling establishment: a dimmer switch-regulated process between dark and light signaling. Plant Physiology, 176(2), 1061-1074. doi: 10.1104/pp.17.01460

Henning, F. A., Mertz, L. M., Jacob-Junior, E. A., Machado, R. D., Fiss, G., & Zimmer, P. D. (2010). Composição química e mobilização de reservas em sementes de soja de alto e baixo vigor. Bragantia, 69(3), 727-733. doi: 10.1590/S0006-87052010000300026

Ibrahim, E. A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192(3), 38-46. doi: 10.1016/j.jplph.2015.12.011

International Seed Testing Association (2014). Seed vigour testing. Zurich, Switzerland: International Rules for Seed Testing.

Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 1-16. doi: 10.1098/rsta.2015.0202

Kalai, T., Bouthour, D., Manai, J., Bettaieb Ben Kaab, L., & Gouia, H. (2016). Salicylic acid alleviates the toxicity of cadmium on seedling growth, amylases and phosphatases activity in germinating barley seeds. Archives of Agronomy and Soil Science, 62(6), 892-904. doi: 10.1080/03650340.2015.1100295

Krzyzanowski, F. C., França-Neto, J. B., Gomes, F. G., Jr., & Nakagawa, J. (2020). Testes de vigor baseados no desempenho das plântulas. In: F. C. Krzyzanowski, R. D. Vieira, J. B. França-Neto, J. Marcos-Filho, (Eds.), Vigor de sementes: conceitos e testes (pp. 79-140). Londrina, PR: ABRATES.

Li, J., Zhao, C., Zhang, M., Yuan, F., & Chen, M. (2019). Exogenous melatonin improves seed germination in Limonium bicolor under salt stress. Plant Signaling & Behavior, 14(11), 1659705. doi: 10.1080/155 92324.2019.1659705

Liang, W., Ma, X., Wan, P., & Liu, L. (2018). Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 495(1), 286-291. doi: 10.1016/j.bbrc.2017.11.043

Marcos-Filho, J. (2015). Seed vigor testing: an overview of the past, present and future perspective. Scientia Agricola, 72(4), 363-374. doi: 10.1590/0103-9016-2015-0007

McCready, R. M., Guggolz, J., Silviera, V., & Owens, H. S. (1950). Determination of starch and amylose in vegetables. Analytical Chemistry, 22(9), 1156-1158. doi: 10.1021/ac60045a016

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428. doi: 10.1021/ac60147a030

Ministério da Agricultura, Pecuária e Abastecimento. (2009). Regras para análise de sementes. Brasília: MAPA/ ACS. Recuperado de http://www.agricultura. gov.br/assuntos/laboratorios/arquivospublicacoes-laboratorio/regras-paraanalise-de-sementes.pdf/view

Mondo, V. H. V., Nascente, A. S., & Cardoso, M. O., Neto. (2016). Common bean seed vigor affecting crop grain yield. Journal of Seed Science, 38(4), 365-370. doi: 10.1590/2317-1545v38n4166814

Mukankusi, C., Raatz, B., Nkalubo, S., Berhanu, F., Binagwa, P., Kilango, M.,... Beebe, S. (2019). Genomics, genetics and breeding of common bean in Africa: a review of tropical legume project. Plant Breeding, 138(4), 401-414. doi: 10.1111/pbr.12573

Naguib, D. M., & Abdalla, H. (2019). Metabolic status during germination of nano silica primed Zea mays seeds under salinity stress. Journal of Crop Science and Biotechnology, 22(5), 415-423. doi: 10.1007/s 12892-019-0168-0

Oliveira, G. E., Pinho, R. G. V., Andrade, T. D., Pinho, É. V. D. R. V., Santos, C. D. D., & Veiga, A. D. (2013). Physiological quality and amylase enzyme expression in maize seeds. Ciência e Agrotecnologia, 37(1), 40-48. doi: 10.1590/S1413-70542013000100005

R Core Team (2020). R: A language and environment for statistical computing. Austria: R Foundation for Statistical Computing.

Rocha, C. R. M. D., Silva, V. N., & Cicero, S. M. (2015). Avaliação do vigor de sementes de girassol por meio de análise de imagens de plântulas. Ciência Rural, 45(6), 970-976. doi: 10.1590/0103-8478cr20 131455

Sako, Y., McDonald, M. B., Fujimura, K., Evans, A. F., & Bennett, M. A. (2001). A system for automated seed vigour assessment. Seed Science and Technology, 29(3), 625-636.

Silva, L. J. D., Medeiros, A. D. D., & Oliveira, A. M. S. (2019). SeedCalc, a new automated R software tool for germination and seedling length data processing. Journal of Seed Science, 41(2), 250-257. doi: 10. 1590/2317-1545v42n2217267

Soltani, A., Gholipoor, M., & Zeinali, E. (2006). Seed reserve utilization and seedling growth of wheat as affected by drought and salinity. Environmental and Experimental Botany, 55(1-2), 195-200. doi: 10.10 16/j.envexpbot.2004.10.012

Sun, Z., & Henson, C. A. (1991). A quantitative assessment of the importance of barley seed α-amylase, β-amylase, debranching enzyme, and α-glucosidase in starch degradation. Archives of Biochemistry and Biophysics, 284(2), 298-305. doi: 10.1016/0003-9861(91)90299-X

Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal. Porto Alegre: Artmed Editora.

Tayade, R., Kulkarni, K. P., Jo, H., Song, J. T., & Lee, J. D. (2019). Insight into the prospects for the improvement of seed starch in legume: a review. Frontiers in Plant Science, 10, 1213. doi: 10.3389/fpls. 2019.01213

Thalmann, M., & Santelia, D. (2017). Starch as a determinant of plant fitness under abiotic stress. New Phytologist, 214(3), 943-951. doi: 10.1111/nph.14491

Yu, S. M., Lo, S. F., & Ho, T. H. D. (2015). Source sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends in Plant Science, 20(12), 844-857. doi: 10.1016/j.tplants.2015.10.009

Downloads

Published

2021-10-08

How to Cite

Padilha, M. S., Coelho, C. . M. M., & Ehrhardt-Brocardo, N. C. M. (2021). Vigor and alpha-amylase activity in common bean seeds under salt stress conditions. Semina: Ciências Agrárias, 42(6SUPL2), 3633–3650. https://doi.org/10.5433/1679-0359.2021v42n6SUPL2p3633

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.