Vigor and alpha-amylase activity in common bean seeds under salt stress conditions
DOI:
https://doi.org/10.5433/1679-0359.2021v42n6SUPL2p3633Keywords:
Phaseolus vulgaris L., Germination, Seedling vigor.Abstract
Seeds with high vigor have greater capacity for hydrolysis and mobilization of stored reserves, which results in the formation of vigorous seedlings, and this behavior is observed under abiotic stress conditions. This study proposes to investigate the relationship of the enzyme alpha-amylase in lots of common-bean seeds with contrasting vigor, when subjected to the absence and presence of salt stress, aiming to identify the relationship of this enzyme with the vigor of the seed lot under these conditions. Seven common-bean cultivars were used. Physiological quality was determined by germination, vigor index and seedling length. The mobilization of reserves was evaluated under absence and presence of salt stress simulated with a NaCl solution with a concentration of 50 mmol L-1. The analyzed variables regarding reserve mobilization were reserve reduction, reserve reduction rate, seedling dry weight, reserve mobilization rate, starch, starch reduction rate and alpha-amylase activity. Results showed that the stress condition negatively affected all the evaluated variables; however, the cultivars classified as having greater vigor showed better physiological performance under stress. Salt stress in common-bean seeds affects seedling performance and reduces alpha-amylase activity during germination, and high-vigor seed lots exhibited higher enzyme activity in the no-stress condition.Downloads
References
Andrade, G. C. D., Coelho, C. M. M., & Padilha, M. S. (2019). Seed reserves reduction rate and reserves mobilization to the seedling explain the vigour of maize seeds. Journal of Seed Science, 41(4), 488-497. doi: 10.1590/2317-1545v41n4227354
Baghel, L., Kataria, S., & Jain, M. (2019). Mitigation of adverse effects of salt stress on germination, growth, photosynthetic efficiency and yield in maize (Zea mays L.) through magnetopriming. Acta Agrobotanica, 72(1), 1-16. doi: 10.5586/aa.1757
Bewley, J. D., Bradford, K. J., Hilhorst, H. & Nonogaki, H. (2013). Seeds: physiology of development, germination and dormancy. New York: Springer Science & Business Media.
Caverzan, A., Giacomin, R., Müller, M., Biazus, C., Lângaro, N. C., & Chavarria, G. (2018). How does seed vigor affect soybean yield components?. Agronomy Journal, 110(4), 1318-1327. doi: 10.2134/agronj 2017.11.0670
Chen, J., Wu, J., Lu, Y., Cao, Y., Zeng, H., Zhang, Z.,... Wang, S. (2016). Molecular cloning and characterization of a gene encoding the proline transporter protein in common bean (Phaseolus vulgaris L.). The Crop Journal, 4(5), 384-390. doi: 10.1016/j.cj.2016.05.009
Chen, L. T., Sun, A. Q., Yang, M., Chen, L. L., Ma, X. L., Li, M. L., & Yin, Y. P. (2017). Relationships of wheat seed vigor with enzyme activities and gene expression related to seed germination under stress conditions. Ying yong sheng tai xue bao: The Journal of Applied Ecology, 28(2), 609-619. doi: 10.13 287/j.1001-9332.201702.019
Cheng, J., Cheng, X., Wang, L., He, Y., An, C., Wang, Z., & Zhang, H. (2015). Physiological characteristics of seed reserve utilization during the early seedling growth in rice. Brazilian Journal of Botany, 38(4), 751-759. doi: 10.1007/s40415-015-0190-6
Cheng, X., Wu, Y., Guo, J., Du, B., Chen, R., Zhu, L., & He, G. (2013). A rice lectin receptor‐like kinase that is involved in innate immune responses also contributes to seed germination. The Plant Journal, 76(4), 687-698. doi: 10.1111/tpj.12328
Cheng, X., Xiong, F., Wang, C., Xie, H., He, S., Geng, G., & Zhou, Y. (2018). Seed reserve utilization and hydrolytic enzyme activities in germinating seeds of sweet corn. Pakistan Journal of Botany, 50(1), 111-116.
Dutta, T., Neelapu, N. R. R., Wani, S. H., & Challa, S. (2018). Response of pulses to drought and salinity stress response: a physiological perspective. In: S. H. Wani, & M. Jain (Eds.), Pulse improvement (pp. 77-98). Cham: Springer.
El-Mowafy, M. R., & Kishk, A. M. S. (2017). Effect of soaking treatments and temperature during germination on germinability and rice (Oryza sativa L.) seed quality. Journal of Plant Production, 8(4), 537-540. doi: 10.21608/JPP.2017.40062
Gommers, C. M., & Monte, E. (2018). Seedling establishment: a dimmer switch-regulated process between dark and light signaling. Plant Physiology, 176(2), 1061-1074. doi: 10.1104/pp.17.01460
Henning, F. A., Mertz, L. M., Jacob-Junior, E. A., Machado, R. D., Fiss, G., & Zimmer, P. D. (2010). Composição química e mobilização de reservas em sementes de soja de alto e baixo vigor. Bragantia, 69(3), 727-733. doi: 10.1590/S0006-87052010000300026
Ibrahim, E. A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192(3), 38-46. doi: 10.1016/j.jplph.2015.12.011
International Seed Testing Association (2014). Seed vigour testing. Zurich, Switzerland: International Rules for Seed Testing.
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 1-16. doi: 10.1098/rsta.2015.0202
Kalai, T., Bouthour, D., Manai, J., Bettaieb Ben Kaab, L., & Gouia, H. (2016). Salicylic acid alleviates the toxicity of cadmium on seedling growth, amylases and phosphatases activity in germinating barley seeds. Archives of Agronomy and Soil Science, 62(6), 892-904. doi: 10.1080/03650340.2015.1100295
Krzyzanowski, F. C., França-Neto, J. B., Gomes, F. G., Jr., & Nakagawa, J. (2020). Testes de vigor baseados no desempenho das plântulas. In: F. C. Krzyzanowski, R. D. Vieira, J. B. França-Neto, J. Marcos-Filho, (Eds.), Vigor de sementes: conceitos e testes (pp. 79-140). Londrina, PR: ABRATES.
Li, J., Zhao, C., Zhang, M., Yuan, F., & Chen, M. (2019). Exogenous melatonin improves seed germination in Limonium bicolor under salt stress. Plant Signaling & Behavior, 14(11), 1659705. doi: 10.1080/155 92324.2019.1659705
Liang, W., Ma, X., Wan, P., & Liu, L. (2018). Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 495(1), 286-291. doi: 10.1016/j.bbrc.2017.11.043
Marcos-Filho, J. (2015). Seed vigor testing: an overview of the past, present and future perspective. Scientia Agricola, 72(4), 363-374. doi: 10.1590/0103-9016-2015-0007
McCready, R. M., Guggolz, J., Silviera, V., & Owens, H. S. (1950). Determination of starch and amylose in vegetables. Analytical Chemistry, 22(9), 1156-1158. doi: 10.1021/ac60045a016
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428. doi: 10.1021/ac60147a030
Ministério da Agricultura, Pecuária e Abastecimento. (2009). Regras para análise de sementes. Brasília: MAPA/ ACS. Recuperado de http://www.agricultura. gov.br/assuntos/laboratorios/arquivospublicacoes-laboratorio/regras-paraanalise-de-sementes.pdf/view
Mondo, V. H. V., Nascente, A. S., & Cardoso, M. O., Neto. (2016). Common bean seed vigor affecting crop grain yield. Journal of Seed Science, 38(4), 365-370. doi: 10.1590/2317-1545v38n4166814
Mukankusi, C., Raatz, B., Nkalubo, S., Berhanu, F., Binagwa, P., Kilango, M.,... Beebe, S. (2019). Genomics, genetics and breeding of common bean in Africa: a review of tropical legume project. Plant Breeding, 138(4), 401-414. doi: 10.1111/pbr.12573
Naguib, D. M., & Abdalla, H. (2019). Metabolic status during germination of nano silica primed Zea mays seeds under salinity stress. Journal of Crop Science and Biotechnology, 22(5), 415-423. doi: 10.1007/s 12892-019-0168-0
Oliveira, G. E., Pinho, R. G. V., Andrade, T. D., Pinho, É. V. D. R. V., Santos, C. D. D., & Veiga, A. D. (2013). Physiological quality and amylase enzyme expression in maize seeds. Ciência e Agrotecnologia, 37(1), 40-48. doi: 10.1590/S1413-70542013000100005
R Core Team (2020). R: A language and environment for statistical computing. Austria: R Foundation for Statistical Computing.
Rocha, C. R. M. D., Silva, V. N., & Cicero, S. M. (2015). Avaliação do vigor de sementes de girassol por meio de análise de imagens de plântulas. Ciência Rural, 45(6), 970-976. doi: 10.1590/0103-8478cr20 131455
Sako, Y., McDonald, M. B., Fujimura, K., Evans, A. F., & Bennett, M. A. (2001). A system for automated seed vigour assessment. Seed Science and Technology, 29(3), 625-636.
Silva, L. J. D., Medeiros, A. D. D., & Oliveira, A. M. S. (2019). SeedCalc, a new automated R software tool for germination and seedling length data processing. Journal of Seed Science, 41(2), 250-257. doi: 10. 1590/2317-1545v42n2217267
Soltani, A., Gholipoor, M., & Zeinali, E. (2006). Seed reserve utilization and seedling growth of wheat as affected by drought and salinity. Environmental and Experimental Botany, 55(1-2), 195-200. doi: 10.10 16/j.envexpbot.2004.10.012
Sun, Z., & Henson, C. A. (1991). A quantitative assessment of the importance of barley seed α-amylase, β-amylase, debranching enzyme, and α-glucosidase in starch degradation. Archives of Biochemistry and Biophysics, 284(2), 298-305. doi: 10.1016/0003-9861(91)90299-X
Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal. Porto Alegre: Artmed Editora.
Tayade, R., Kulkarni, K. P., Jo, H., Song, J. T., & Lee, J. D. (2019). Insight into the prospects for the improvement of seed starch in legume: a review. Frontiers in Plant Science, 10, 1213. doi: 10.3389/fpls. 2019.01213
Thalmann, M., & Santelia, D. (2017). Starch as a determinant of plant fitness under abiotic stress. New Phytologist, 214(3), 943-951. doi: 10.1111/nph.14491
Yu, S. M., Lo, S. F., & Ho, T. H. D. (2015). Source sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends in Plant Science, 20(12), 844-857. doi: 10.1016/j.tplants.2015.10.009
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Semina: Ciências Agrárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.