Xilanases em dietas com alimentos alternativos e redução energética para poedeiras comerciais

Autores

DOI:

https://doi.org/10.5433/1679-0359.2021v42n5p3007

Palavras-chave:

Aspergillusjaponicus, Carboidrases, Enzimas exógenas, Metabolizabilidade, Polissacarídeos não amiláceos.

Resumo

O uso de ingredientes alternativos vem aumentando em uma tentativa contínua de reduzir os custos de produção, juntamente com o uso de aditivos, como os carboidratos, para seus possíveis efeitos positivos na metabolização de nutrientes por camadas. Assim, este estudo teve como objetivo avaliar os efeitos de diferentes xilanases em dietas com energia metabolizável reduzida (ME) e a inclusão de ingredientes alternativos sobre a metabolizabilidade de nutrientes em dietas para galinhas poedeiras comerciais, realizando dois testes de metabolismo. No primeiro ensaio, 100 aves foram distribuídas em delineamento inteiramente casualizado em esquema fatorial 2x2+1 (duas reduções de energia metabolizável x duas xilanases, mais uma dieta controle). No segundo ensaio, 140 aves foram distribuídas em delineamento inteiramente casualizado em esquema fatorial 2x3+2 (duas xilanases x três ingredientes -, mais duas dietas controle positivo e controle negativo). Conclui-se que a suplementação com xilanase do Pantanal melhora a metabolizabilidade dos nutrientes de dietas a base de milho e farelo de soja para poedeiras comerciais leves, possibilitando a redução em até 200 Kcal/kg de energia metabolizável das dietas. As xilanases são mais efetivas sobre o farelo de trigo e possibilitam a redução de 150 Kcal/kg de energia metabolizável nas dietas de poedeiras comerciais, sem prejuízo na metabolizabilidade dos nutrientes. Em dietas contendo ingredientes fibrosos a ação da xilanase do Pantanal é similar a xilanase comercial.

Downloads

Não há dados estatísticos.

Biografia do Autor

Gislaine da Cunha de Andrade, Universidade Federal de Mato Grosso do Sul

Discente do Curso de Mestrado do Programa de Pós-Graduação em Zootecnia, Universidade Estadual do Mato Grosso do Sul, UEMS, Aquidauana, MS, Brasil.

Elis Regina de Moraes Garcia, Universidade Estadual de Mato Grosso do Sul

Prof., UEMS, Aquidauana, MS, Brazil.

Charles Kiefer, Universidade Federal de Mato Grosso do Sul

Prof., Faculdade de Medicina Veterinária e Zootecnia, UFMS, Campo Grande, MS, Brasil.

Fabiana Fonseca Zanoelo, Universidade Federal de Mato Grosso do Sul

Profa, Faculdade de Programa de Ciências Biológicas, UFMS, Campo Grande, MS, Brasil.

Giovana Cristina Giannesi, Universidade Federal de Mato Grosso do Sul

Profa, Faculdade de Programa de Ciências Biológicas, UFMS, Campo Grande, MS, Brasil.

Patrícia Gomes Santana, Universidade Federal de Mato Grosso do Sul

Discente do Curso de Mestrado do Programa de Pós-Graduação em Zootecnia, Universidade Estadual do Mato Grosso do Sul, UEMS, Aquidauana, MS, Brasil.

Danilo Souza Sanches, Universidade Estadual de Mato Grosso do Sul

Discente do Curso de Mestrado do Programa de Pós-Graduação em Zootecnia, Universidade Estadual do Mato Grosso do Sul, UEMS, Aquidauana, MS, Brasil.

Referências

Adeola, O., & Cowieson, A. J. (2011). Board-invited review: opportunities and challenges in using exogenous enzymes to improve non-ruminant animal production. Journal of Animal Science, 89(10), 3189-3218. doi: 10.2527/jas.2010-3715

Alagawany, M., Elners, S. H. S., & Farag, M. R. (2018). The role of exogenous enzymes in promoting growth and improving nutrient digestibility in poultry. Iranian Journal Veterinary Research, 19(3), 157-164. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6184034/

Barbosa, N. A. A., Bonato, M. A., Sakomura, N. K., Dourado, L. R. B., Fernandes, J. B. K., & Kawauchi, I. M. (2014). Digestibilidade ileal de frangos de corte alimentados com dietas suplementadas com enzimas exógenas. Comunicata Scientiae, 5(4), 361-369. doi: 10.14295/cs.v5i4.460

Bobeck, E. A., Nachtrieb, A. B., Batal, A. B., & Persia, M. E. (2014). Effects of xylanase supplementation of corn-soybean meal-dried distiller's grain diets on performance, metabolizable energy, and body composition when fed to first cycle laying hens. Journal of Applied Poultry Research, 23(2), 174-180. doi: 10.3382/japr.2013-00841

Broch, J., Oliveira, N. T. E., Nunes, R. V., Henz, J. R., Silva, I. M., Frank. R., & Schone, R. A. (2015). Chemical composition and energetic values of wheat and its sub-products for broiler chicken. Semina: Ciências Agrárias, 36(5), 3481-3488. doi: 10.5433/1679-0359.2015v36n5p3481

Cowieson, A. J. (2010). Strategic selection of exogenous enzymes for corn/ soy-based poultry diets. Journal of Poultry Science, 47(1), 1-7. doi: 10.2141/jpsa.009045

Dekalb White (2009). Manual de manejo das poedeiras Dekalb White. Recuperado de https://www.fcav. unesp.br/Home/departamentos/zootecnia/NILVAKAZUESAKOMURA/manual_dekalb_white.pdf

Ghayour-Najafabadi, P., Khorravinia, H., Gheisari, A., Azarfar, A., & Khanahmadi, M. (2018). Productive performance, nutrient digestibility and intestinal morphometry in broiler chickens fed corn or wheat-based diets supplemented with bacterial-or-fungal originated xylanase. Italian Journal of Animal Science, 17(1), 165-174. doi: 10.1080/1828051X.2017.1328990

Guo, S., Liu, D., Zhao, X., Li, C., & Guo, Y. (2014). Xylanase supplementation of a wheat-based diet improved nutrient digestion and mRNA expression of intestinal nutrient transporters in broiler chickens infected with Clostridium perfringens. Poultry Science, 93(1), 94-103. doi: 10.3382/ps.2013-03188

Iwahashi, A. S., Furlan, A. C., Scherer, C., Ton, A. P. S., Lorençon, L., & Scapinello, C. (2011). Utilização de complexo enzimático em dietas para codornas de corte. Acta Scientiarum. Animal Science, 33(3), 273-279. doi: 10.4025/actascianimsci.v33i3.11216

Kalantar, M., Khajali, F., & Yaghobfar, A. (2015). Different dietary source of non-starch polysaccharides supplemented with enzymes affected growth and carcass traits, blood parameters and gut physicochemical properties of broilers. Global Journal of Animal Scientific Research, 3(2), 412-418. Retrieved from http://www.journals.wsrpublishing.com/index.php/gjasr/article/view/357

Kiarie, E., Walsh, M. C., & Nyachoti, C. M. (2016). Performance, digestive function and mucosal responses to selected feed additives for pigs. Journal of Animal Science, 94(3), 169-180. doi: 10.2527/jas.2015-98 35

Lima, M. R., Costa, F. G. P., Vieira, D. V. G., Cardoso, A. S., Lima, G. S., Cavalcante, D. T.,... Kaneko, I. N. (2019). Xylanase, glucanase, and phytase in the diet of light laying hens. Journal of Applied Poultry Research, 28(4), 1150-1155. doi: 10.3382/japr/pfz081

Masey O’Neill, H. V., Smith, J. A., & Bedford, M. R. (2014). Multicarbohydrase enzymes for non- ruminants. Asian- Australasian Journal of Animal Science, 27(2), 290-301. doi: 10.5713/ajas.2013.132 61

Mirzaie, S., Zaghari, M., Aminzadeh, S., Shivazad, M., & Mateos, G. G. (2012). Effects of wheat inclusion and xylanase supplementation of the diet on productive performance, nutrient retention, and endogenous intestinal enzyme activity of laying hens. Poultry Science, 91(2), 413-425. doi: 10.3382/ps.2011-01686

Moghaddam, H. N., Salari, S., Arshami, J., Golian, A., & Maleki, M. (2012). Evaluation of the nutritional value of sunflower meal and its effect on performance, digestive enzyme activity, organ weight, and histological alterations of the intestinal villi of broiler chickens. Journal Applied Poultry Research, 21(2), 293-304. doi: 10.3382/japr.2011-00396

Mongin, P. (1981). Recent Advances in dietary anion-cation balance: application in poultry. Procedure Nutrition Society, 40(1), 285-294.

Munir, K., & Maqsood, S. (2013). A review on role of exogenous enzyme supplementation in poultry production. Emirates Journal of Food and Agriculture, 25(1), 66-80. doi: 10.9755/ejfa.v25i1.9138

Nian, F., Guo, Y. M., Ru, Y. J., Li, F. D., & Péron, A. (2011). Effect of exogenous xylanase supplementation on the performance, net energy and gut microflora of broiler chickens fed wheat-based diets. Asian-Australasian Journal of Animal Science, 24(3), 400-406. doi: 10.5713/ajas.2011.10273

Pirgozliev, V., Bedford, S. R., & Acamovic, T. (2010). Effect of dietary xylanase on energy, amino acid and mineral metabolism, and egg production and quality in laying hens. British Poultry Science, 51(5), 639-647. doi: 10.1080/00071668.2010.514325

Ravindran, V. (2013). Feed enzymes: the science, practice, and metabolic realities. Journal Applied Poultry Research, 22(3), 628-636. doi: 10.3382/japr.2013-00739

Rehman, Z. U., Kamran, J., Abd El-Hack, M. E., Alagawany, M., Bhatti, S. A., Ahmad, G.,… Ding, C. (2017). Influence of low protein and amino acid diets with different sources of protease on performance, carcasses and nitrogen retention of broiler chickens. Animal Production Science, 58(9), 1625-1631. doi: 10.1071/AN16687

Rostagno, H. S., Albino, L. F. T., Hannas, M. I., Donzele, J. L., Sakomura, N. K., Perazzo, F. G.,… Brito, C. O. (2017). Tabelas brasileiras para aves e suínos (composição de alimentos e exigências nutricionais). Viçosa, MG: Editora UFV.

Sadeghi, A., Toghyani, M., & Gheisari, A. (2015). Effect of various fiber types and choice feeding of fiber on performance, gut development, humoral immunity, and fiber preference in broiler chicks. Poultry Science, 94(11), 2734-2743. doi: 10.3382/ps/pev292

Saeed, M., Ayasan, T., Alagawany, M., Abd El-Hack, M. E., Abdel-Latif, M., Arain, M. A., & Chao, S. (2019). The role of ß-mannanase (Hemicell) in improving poultry productivity, health hand environment. Brazilian Journal of Poultry Science, 21(3), 1-8. doi: 10.1590/1806-9061-2019-1001

Sakomura, N. K., & Rostagno, H. S. (2016). Métodos de pesquisa em nutrição de monogástricos. Jaboticabal, SP: FUNEP.

SAS University Edition (2013). Statistical analyses System-SAS. Retrieved from https://www.sas.com/pt_br/ software/university-edition/download-software.html.

Santos, V. L., Gentilini, F. P., Ladeira, S. R. L., Anciuti, M. A., & Rutz, F. (2017). Complexo enzimático e farelo de arroz integral sobre o desempenho produtivo e qualidade dos ovos de poedeiras em segundo ciclo de produção. Revista Ciência Animal Brasileira, 18(1), 1-10. doi: 10.1590/1089-6891v18e-18117

Silva, D. J., & Queiroz, A. C. (2002). Análises de alimentos (métodos químicos e biológicos). Viçosa, MG: Editora UFV.

Sinha, A. K., Kumar, V., Makkar, H. P. S., De Boeck, G., & Becker, K. (2011). Non-starch polysaccharides and their role in fish nutrition - a review. Food Chemistry, 127(4), 1409-1426. doi: 10.1016/j. foodchem.2011.02.042

Sousa, L. S., Carvalho, T. S. M., Nogueira, F. A., Saldanha, M. M., Vaz, D. P., Bertechini, A. G., Lara, L. J. C. (2019). Fiber source and xylanase on performance, egg quality, and gastrointestinal tract of laying hens. Revista Brasileira de Zootecnia, 48(1), 1-10. doi: 10.1590/rbz4820170286 Retrieved from https://www.scielo.br/pdf/rbz/v48/1806-9290-rbz-48-e20170286.pdf

Souza, K. M. R., Faria, D. E., Nakagi, V. S., Carão, A. C. P., Pacheco, B. H. C., Trevisan, R. B., & Gomes, G. A. (2012). Metabolizable energy values of diets supplemented with xylanase determined with laying hens. Revista Brasileira de Zootecnia, 41(12), 2433-2440. doi: 10.1590/S1516-35982012001200008

Stefanello, C., Vieira, S. L., Carvalho, P. S., Sorbara, J. O. B., & Cowieson, A. J. (2016). Energy and nutrient utilization of broiler chickens fed corn-soybean meal and corn-based diets supplemented with xylanase. Poultry Science, 95(8), 1881-1887. doi: 10.3382/ps / pew070

Vandeplas, S., Dauphin, R. D., Thonart, P., Théwis, A., & Beckers, Y. (2010). Effect of the bacterial or fungal origin of exogenous xylanases supplemented to a wheat-based diet on performance of broiler chickens and nutrient digestibility of the diet. Canadian Journal of Animal Science, 90(2), 221-228. doi: 10.4141/CJAS09067

Varzaru, I., Panaite, T. D., Cornescu, G. M., & Olteanu, M. (2019). Apparent faecal digestibility of essential amino acids from Ω3 pufa diets for laying hens. Brazilian Journal of Poultry Science, 21(3), 1-8. doi: 10.1590/1806-9061-2019-1025

Viana, M. T. S., Albino, L. F. T., Rostagno, H. S., Silva, E. A., Vieira, R. A., & Ribeiro, V., Jr. (2011). Utilização de xilanase em dietas compostas por milho e farelo de soja de poedeiras comerciais em postura. Revista Brasileira de Zootecnia, 40(2), 386-390. doi: 10.1590/S1516-35982011000200021

Yaghobfar, A., & Kalantar, M. (2017). Effect of non-starch polysaccharide (NSP) of wheat and barley supplemented with exogenous enzyme blend on growth performance, gut microbial, pancreatic enzyme activities, expression of glucose transporter (SGLT1) and mucin producer (MUC2) genes of broiler chickens. Revista Brasileira de Ciência Agrícola, 19(4), 629-638. doi: 10.1590/1806-9061-2016-0441

Downloads

Publicado

2021-07-02

Como Citar

Andrade, G. da C. de, Garcia, E. R. de M., Kiefer, C., Zanoelo, F. F., Giannesi, G. C., Santana, P. G., & Sanches, D. S. (2021). Xilanases em dietas com alimentos alternativos e redução energética para poedeiras comerciais. Semina: Ciências Agrárias, 42(5), 3007–3028. https://doi.org/10.5433/1679-0359.2021v42n5p3007

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.