Interpolation Features in ContExt Software for Mammography Processing

Interpolation Features in ContExt Software for Mammography Processing

Authors

DOI:

https://doi.org/10.5433/1679-0375.2025.v46.53582

Keywords:

medical image processing, contour extraction, interpolation methods, computational efficiency

Abstract

This study proposes the expansion of the functionalities of the ContExt software, designed for contour extraction and mesh generation for numerical simulations in medical imaging. The main innovation is the incorporation of interpolation methods to enlarge contours after image resolution reduction, thereby enabling greater computational efficiency. Bilinear, bicubic, biquadratic, and cubic spline methods were evaluated, along with refinement techniques such as node removal and the Ramer–Douglas–Peucker algorithm. Reducing the image to half of its original resolution resulted in a significant decrease in processing time (over 95%) while maintaining satisfactory contour quality. However, a reduction to one-quarter resolution compromised the fidelity of the extracted structures. Bilinear method achieved the highest overlap rate, whereas the cubic spline proved to be the most accurate. Tests demonstrate that the new functionalities integrated into ContExt make the software more versatile and efficient for processing high-resolution images, with potential applications in various clinical and computational contexts.

Downloads

Download data is not yet available.

Author Biographies

Rafael Tokairin, Universidade Estadual de Londrina

Undergraduate student in Computer Science, Universidade Estadual de Londrina (UEL), Londrina, Paraná, Brazil.

Rafael Furlanetto Casamaximo, undefined

M.Sc. in Computer Science, Universidade Estadual de Londrina (UEL), Londrina, Paraná, Brazil.

Neyva Maria Lopes Romeiro, Universidade Estadual de Londrina

Prof. Dr., Researcher at PGMAC, Department of Mathematics, Universidade Estadual de Londrina (UEL), Londrina, Paraná, Brazil.

Pedro Zaffalon da Silva, Universidade Estadual de Londrina

Ph.D. student in Computer Science, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.

Eliandro Rodrigues Cirilo, undefined

Prof. Dr., Researcher at PGMAC, Department of Mathematics, Universidade Estadual de Londrina (UEL),, Londrina, PR, Brazil

References

Azevedo, R. L., Gerótica, R. M. G., & Sanches, T. P. (2016). A importância da mamografia no diagnóstico precoce do câncer de mama. UNILUS Ensino e Pesquisa, 13(30). http://revista.lusiada.br/index.php/ruep/article/view/598

Canayaz, M. (2021). MH-COVIDNet: Diagnosis of COVID-19 using deep neural networks and metaheuristic-based feature selection on X-ray images. Biomedical Signal Processing and Control, 64, 102257. https://doi.org/10.1016/j.bspc.2020.102257 DOI: https://doi.org/10.1016/j.bspc.2020.102257

Casamaximo, R. F., Romeiro, N. M. L., da Silva, P. Z., Souza, I. P., Silva, J. T., Natti, P. L., & Cirilo, E. R. (2021). Algorithm for extracting points from images: irregular contours. XLII Ibero-Latin American Congress on Computational Methods in Engineering, 3(03), 1–7. https://www.researchgate.net/publication/354930765_Algorithm_for_extracting_points_from_images_irregular_contours

Chai, X., Chen, J., Mao, Z., & Zhu, Q. (2023). An Upscaling–Downscaling Optimal Seamline Detection Algorithm for Very Large Remote Sensing Image Mosaicking. Remote Sensing, 15, 89. https://doi.org/10.3390/rs15010089 DOI: https://doi.org/10.3390/rs15010089

Cirilo, E. R., Figliaggi, R. M., & Natti, P. L. (2023). Quality Parameter for Edge Representation of Images via Cubic Spline. Semina: Ciências Exatas e Tecnológicas, 44, e47720. https://doi.org/10.5433/1679-0375.2023.v44.47720 DOI: https://doi.org/10.5433/1679-0375.2023.v44.47720

ContExt. (2024). Software for contour extraction and mesh generation for numerical analysis. https://github.com/RafaelCasamaximo/ContExt

Dumic, E., Grgic, S., & Grgic, M. (2007). The Use of Wavelets in Image Interpolation: Possibilities and Limitations. Radioengineering, 16(4).

Fadnavis, S. (2014). Image Interpolation Techniques in Digital Image Processing: An Overview. International Journal of Engineering Research and Applications (IJERA), 4(10), 70–73. https://ijera.com/papers/Vol4_issue10/Part%20-%201/K41007073.pdf

Feng, Y., Spezia, M., Huang, S., Yuan, C., Zeng, Z., Zhang, L., Ji, X., Liu, W., Huang, B., Luo, W., Liu, B., Lei, Y., Du, S., Vuppalapati, A., Luu, H. H., Haydon, R. C., He, T.-C., & Ren, G. (2018). Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes & Diseases, 5(2), 77–106. https://doi.org/10.1016/j.gendis.2018.05.001 DOI: https://doi.org/10.1016/j.gendis.2018.05.001

Instituto Nacional de Câncer José Alencar Gomes da Silva. (2004). Controle do câncer de mama - Documento de consenso. Revista Brasileira de Cancerologia, 50(2), 77–90. https://doi.org/10.32635/2176-9745.RBC.2004v50n2.2039 DOI: https://doi.org/10.32635/2176-9745.RBC.2004v50n2.2039

Jales, R. M. (2022). Incidência mamográfica em clivagem em caso de câncer de mama bilateral [Dr.Pixel]. http://drpixel.fcm.unicamp.br/conteudo/incidencia-mamografica-em-clivagem-em-caso-de-cancer-de-mama-bilateral

Jarosch, A., Anslow, F., & Clarke, G. (2010). High-resolution precipitation and temperature downscaling for glacier models. Climate Dynamics, 38, 391–409. https://doi.org/10.1007/s00382-010-0949-1 DOI: https://doi.org/10.1007/s00382-010-0949-1

Jasti, V. D. P., Zamani, A. S., Arumugam, K., Naved, M., Pallathadka, H., Sammy, F., Raghuvanshi, A., & Kaliyaperumal, K. (2022). Computational technique based on machine learning and image processing for medical image analysis of breast cancer diagnosis. Security and Communication Networks, 2022(1), 1918379. https://doi.org/10.1155/2022/1918379 DOI: https://doi.org/10.1155/2022/1918379

Kösters, J., & Gøtzsche, P. (2003). Regular self-examination or clinical examination for early detection of breast cancer. Cochrane Database of Systematic Reviews, (2), CD003373. https://pubmed.ncbi.nlm.nih.gov/12804462/ DOI: https://doi.org/10.1002/14651858.CD003373

Kshatri, S. S., & Singh, D. (2023). Convolutional Neural Network in Medical Image Analysis: A Review. Archives of Computational Methods in Engineering, 30, 2793–2810. https://doi.org/10.1007/s11831-023-09898-w DOI: https://doi.org/10.1007/s11831-023-09898-w

Liu, S., Liu, X., Wang, S., & Khan, M. (2021). Fuzzy-aided solution for out-of-view challenge in visual tracking under IoT-assisted complex environment. Neural Computing and Applications, 33(4), 1055–1065. https://doi.org/10.1007/s00521-020-05021-3 DOI: https://doi.org/10.1007/s00521-020-05021-3

McKinney, W. (2011). pandas: a foundational Python library for data analysis and statistics. In Python for High Performance and Scientific Computing (Vol. 14, pp. 1–9). https://www.researchgate.net/publication/265194455_pandas_a_Foundational_Python_Library_for_Data_Analysis_and_Statistics

Nyström, L., Andersson, I., Bjurstam, N., Frisell, J., Nordenskjöld, B., & Rutqvist, L. E. (2002). Long-term effects of mammography screening: updated overview of the Swedish randomised trials. The Lancet, 359(9310), 909–919. https://doi.org/10.1016/S0140-6736(02)08020-0 DOI: https://doi.org/10.1016/S0140-6736(02)08020-0

Patel, V., Mistree, K., & Gopalbhai, C. (2013). A Review on Different Image Interpolation Techniques for Image Enhancement. International Journal of Emerging Technology and Advanced Engineering, 3(12), 129–133. https://iranarze.ir/wp-content/uploads/2017/10/7964-English-IranArze.pdf

Python Software Foundation. (2021). Python releases for Windows, version 24. https://www.python.org/downloads/windows/

Ramer, U. (1972). An iterative procedure for the polygonal approximation of plane curves. Computer Graphics and Image Processing, 1, 244–256. https://doi.org/10.1016/S0146-664X(72)80017-0 DOI: https://doi.org/10.1016/S0146-664X(72)80017-0

Romeiro, N. M. L., Panis, C., dos Santos, M. C. T., Rech, D., Natti, P. L., & Cirilo, E. R. (2022). Covariate clustering: women with breast cancer in southwestern Paraná, Brazil. Revista de Senología y Patología Mamaria, 35(3), 175–183. https://doi.org/10.1016/j.senol.2021.12.005 DOI: https://doi.org/10.1016/j.senol.2021.12.005

Scholl, I., Aach, T., Deserno, T. M., & Kuhlen, T. (2011). Challenges of medical image processing. Computing Science - Research and Development, 26, 5–13. https://doi.org/10.1007/s00450-010-0146-9 DOI: https://doi.org/10.1007/s00450-010-0146-9

Schulz-Wendtland, R., Fuchsjäger, M., Wacker, T., & Hermann, K.-P. (2009). Digital mammography: an update. European Journal of Radiology, 72(2), 258–265. https://doi.org/10.1016/j.ejrad.2009.05.052 DOI: https://doi.org/10.1016/j.ejrad.2009.05.052

Shannon, C. E. (1949). Communication in the presence of noise. Proceedings of the IRE, 37(1), 10–21. https://doi.org/10.1109/JRPROC.1949.232969 DOI: https://doi.org/10.1109/JRPROC.1949.232969

Sickles, E. A. (2007). The spectrum of breast asymmetries: imaging features, work-up, management. Radiologic Clinics of North America, 45(5), 765–771. https://doi.org/10.1016/j.rcl.2007.06.002 DOI: https://doi.org/10.1016/j.rcl.2007.06.002

Siegel, R. L., Miller, K. D., & Jemal, A. (2018). Cancer statistics, 2018. CA: A Cancer Journal for Clinicians, 68(1), 7–30. https://doi.org/10.3322/caac.21442 DOI: https://doi.org/10.3322/caac.21442

Silva, P. Z., Casamaximo, R. F., Romeiro, N. M. L., Izidoro, G. P., Tokairin, R. P., & Natti, P. L. (2025). Integrating breast cancer laboratory imaging with numerical analysis: ContExt software for contour extraction and mesh generation. Computers in Biology and Medicine, 196, 110591. https://doi.org/10.1016/j.compbiomed.2025.110591 DOI: https://doi.org/10.1016/j.compbiomed.2025.110591

Smith, D. (2020). Biquadratic interpolation. National Oceanic and Atmospheric Administration. https://repository.library.noaa.gov/view/noaa/26464

Suman, S., Hussin, F. A., Malik, A. S., Walter, N., Lee Goh, K., Hilmi, I., & Ho, S. H. (2014). Image Enhancement Using Geometric Mean Filter and Gamma Correction for WCE Images. In C. K. Loo et al. (Eds.), Neural Information Processing. ICONIP 2014, Springer. https://doi.org/10.1007/978-3-319-12643-2_34 DOI: https://doi.org/10.1007/978-3-319-12643-2_34

Sun, W., & Chen, Z. (2020). Learned image downscaling for upscaling using content adaptive resampler. IEEE Transactions on Image Processing, 29, 4027–4040. https://doi.org/10.1109/TIP.2020.2970248 DOI: https://doi.org/10.1109/TIP.2020.2970248

Thévenaz, P., Blu, T., & Unser, M. (2000). Image interpolation and resampling. In I. N. Bankman (Ed.), Handbook of Medical Imaging: Processing and Analysis (Vol. 1, pp. 393–420). Academic Press. https://doi.org/10.1016/B978-0-12-373904-9.X0001-4 DOI: https://doi.org/10.1016/B978-012077790-7/50030-8

Thornton, H. (2001). Screening for breast cancer with mammography. The Lancet, 358(9299), 2167–2168. https://doi.org/10.1016/S0140-6736(01)07193-8 DOI: https://doi.org/10.1016/S0140-6736(01)07198-7

Yang, W., Zhang, S., Chen, Y., Li, W., & Chen, Y. (2009). Shape symmetry analysis of breast tumors on ultrasound images. Computers in Biology and Medicine, 39, 231–238. https://doi.org/10.1016/j.compbiomed.2008.12.007 DOI: https://doi.org/10.1016/j.compbiomed.2008.12.007

Yu, W., Zhu, Q., Zheng, N., Huang, J., Zhou, M., & Zhao, F. (2023). Learning Non-Uniform-Sampling for Ultra-High-Definition Image Enhancement. MM ’23: Proceedings of the 31st ACM International Conference on Multimedia, 1412–1421. https://doi.org/10.1145/3581783.3611836 DOI: https://doi.org/10.1145/3581783.3611836

Zare, M. R., Seng, W. C., & Mueen, A. (2013). Automatic classification of medical X-ray images. Malaysian Journal of Computer Science, 26(1), 9–22. https://doi.org/10.22452/mjcs.vol26no1.2 DOI: https://doi.org/10.22452/mjcs.vol26no1.2

Downloads

Published

2025-12-05

How to Cite

Tokairin, R., Casamaximo, R. F., Romeiro, N. M. L., Silva, P. Z. da, & Cirilo, E. R. (2025). Interpolation Features in ContExt Software for Mammography Processing. Semina: Ciências Exatas E Tecnológicas, 46, e53582. https://doi.org/10.5433/1679-0375.2025.v46.53582

Issue

Section

Biomathematics (Special section)
Loading...