Pigment Identification and Depth Profile in Pictorial Artworks by Non-Invasive Hybrid XRD-XRF Portable System
DOI:
https://doi.org/10.5433/1679-0375.2023.v44.48506Keywords:
portable, XRD-XRF, painting , non-invasive, EDXR , archaeometryAbstract
A non-invasive XRD-XRF portable system for Archaeometry based on Angle and Energy Dispersive XRD (Hybrid XRD) plus XRF has been previously proposed by the authors. It gathers an attractive compromise between analytical performance and measurement time, as well as a higher energy penetration with respect to conventional Angle Dispersive XRD (ADXRD). Penetration to inside layers, usually perceived as an inconvenient for non-invasive portable XRF or XRD analyzer, can instead be informative for the proposed hybrid XRD-XRF system to perform depth profiling analysis. This hybrid configuration harness from the redundancy of the data, in the sense that a single XRF or XRD specimen, taken at the same sample point, appears in multiple spectrograms to account for data counting statistics. On this work, the performance of the system on standard reference material, as well as the identification of pigments in the surface layer of paintings is evaluated. Specific Hybrid data processing was conceived to examine the layer structure of the painting, by distinguishing signal patterns of the exposed and the under layers. The system is ventured for the first time to the study of pictorial artworks in coffin and cartonnage samples from ancient Egyptian sarcophagi. Prussian blue pigment in a modeled painting is also discussed.
Downloads
References
Anderson, E., Almond, M. J., Matthews, W., Cinque, G., & Frogley, M. D. (2014). Analysis of Red Pigments from the Neolithic sites of Çatalhöyük in Turkey and Sheikh-e Abad in Iran. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 131, 373–383. DOI: https://doi.org/10.1016/j.saa.2014.03.126
Bonizzoni, L., Caglio, S., Galli, A., & Poldi, G. (2008). A non-invasive method to detect stratigraphy, thicknesses, and pigment concentration of pictorial multilayers based on EDXRF and vis-RS: In situ applications. Applied Physics A, 92(1), 203–210. DOI: https://doi.org/10.1007/s00339-008-4482-6
Brunetti, B., Miliani, C., Rosi, F., Doherty, B., Monico, L., Romani, A., & Sgamellotti, A. (2016). Noninvasive Investigations of Paintings by Portable Instrumentation: The MOLAB Experience. Topics in Current Chemistry, 374(1), 10. DOI: https://doi.org/10.1007/s41061-015-0008-9
Colomban, P. (2012). The on-site/remote Raman analysis with mobile instruments: A review of drawbacks and success in cultural heritage studies and other associated fields. Journal of Raman Spectroscopy, 43(11), 1529–1535. DOI: https://doi.org/10.1002/jrs.4042
de Viguerie, L., Beck, L., Salomon, J., Pichon, L., & Walter, P. H. (2009). Composition of Renaissance Paint Layers: Simultaneous Particle Induced Xray Emission and Backscattering Spectrometry. Analytical Chemistry, 81(19), 7960–7966. DOI: https://doi.org/10.1021/ac901141v
de Viguerie, L., Walter, P., Laval, E., Mottin, B., & Solé, V. A. (2010). Revealing the sfumato Technique of Leonardo da Vinci by X-Ray Fluorescence Spectroscopy. Angewandte Chemie International Edition, 49(35), 6125–6128. DOI: https://doi.org/10.1002/anie.201001116
Downs, R. T., & Hall-Wallace, M. (2003). The American Mineralogist crystal structure database. American Mineralogist, 88, 247–250. https://api. semanticscholar.org/CorpusID:39137936
Eveno, M., Duran, A., & Castaing, J. (2010). A portable X-ray diffraction apparatus for in situ analyses of masters’ paintings. Applied Physics A, 100(3), 577–584. DOI: https://doi.org/10.1007/s00339-010-5641-0
Gianoncelli, A., Castaing, J., Ortega, L., Dooryhée, E., Salomon, J., Walter, P., Hodeau, J.-L., & Bordet, P. (2008). A portable instrument for in situ determination of the chemical and phase compositions of cultural heritage objects. X-Ray Spectrometry, 37(4), 418–423. DOI: https://doi.org/10.1002/xrs.1025
Ivanov, I. G., Popudribko, N. N., Pjatygina, N. G., Firsova, V. A., & Fundamensky, V. S. (1995). PDWINwindows program package for X-ray polycrystal analysis. http://kfes-117.karlov.mff.cuni.cz/ecmcd/ecm/abstract/all/612.htm
Jaksch, H., Seipel, W., Weiner, K. L., & Goresy, A. E. (1983). Egyptian blue? Cuprorivaite a window to ancient Egyptian technology. Naturwissenschaften, 70(11), 525–535. https://doi.org/10. 1007/BF00376668 Kaiser, D. L., & Watters, R. L. (2010). Standard Reference Material® 660b. Line Position and Line Shape Standard for Powder Diffraction. https : / / 11bm . xray . aps . anl . gov / documents / NISTSRM / NIST _ SRM _ 660b _ LaB6 . pdf# : ~:text =Line% 20Position% 20and% 20Line% 20Shape%20Standard%20for%20Powder,of% 20lanthanum%20hexaboride%2C%20LaB6% 2C%20powder%20bottled%20under%20argon
Kämpfe, B., Luczak, F., & Michel, B. (2005). Energy Dispersive X-Ray Diffraction. Particle & Particle Systems Characterization, 22(6), 391–396. DOI: https://doi.org/10.1002/ppsc.200501007
Lambert, J. B. (Ed.). (1984). Archaeological Chemistry—III (Vol. 205). American Chemical Society. DOI: https://doi.org/10.1021/ba-1984-0205
Mendoza-Cuevas, A. (2019). Las técnicas nucleares en un enfoque no invasivo para el estudio arqueométrico de bienes culturales cubanos. Nucleus, 66, 11. http:// nucleus. cubaenergia. cu/ index.php/nucleus/article/view/683/
Mendoza-Cuevas, A., Bernardini, F., Gianoncelli, A., & Tuniz, C. (2015). Energy dispersive X-ray diffraction and fluorescence portable system for cultural heritage applications: Portable ED-XRF-XRD system for cultural heritage. X-Ray Spectrometry, 44(3), 105–115. DOI: https://doi.org/10.1002/xrs.2585
Mendoza-Cuevas, A., & Fernandez-de-Cossio, J. (2016a). Hybrid-angle-energy dispersive low-power Xray diffraction and fluorescence portable system for non-invasive study: Peak identification and object positioning corrections. Microchemical Journal, 124, 235–240.
Mendoza-Cuevas, A., & Fernandez-de-Cossio, J. (2016b). Performance of hybrid angle-energy dispersive X-ray diffraction and fluorescence portable system for non-invasive surface-mineral identification in archaeometry. ArXiv:1610.06295 [Physics]. DOI: https://doi.org/10.1016/j.microc.2015.08.008
Mendoza-Cuevas, A., & Perez Gravie, H. (2011). Portable energy dispersive X-ray fluorescence and X-ray diffraction and radiography system for archaeometry. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 633(1), 72– 78. DOI: https://doi.org/10.1016/j.nima.2010.12.178
Pizzo, B., Pecoraro, E., & Macchioni, N. (2013). A New Method to Quantitatively Evaluate the Chemical Composition of Waterlogged Wood by Means of Attenuated Total Reflectance Fourier Transform Infrared (ATR FT-IR) Measurements Carried Out on Wet Material. Applied Spectroscopy, 67(5), 553–562. DOI: https://doi.org/10.1366/12-06819
Rafalska-Łasocha, A., Podulka, K., & Łasocha, W. (2011). XRPD investigations of “Prussian blue” artists’ pigment. Powder Diffraction, 26(1), 39–47. DOI: https://doi.org/10.1154/1.3554269
Rehren, T. H. (2008). A review of factors affecting the composition of early Egyptian glasses and faience: Alkali and alkali earth oxides. Journal of Archaeological Science, 35(5), 1345–1354. DOI: https://doi.org/10.1016/j.jas.2007.09.005
Salvadó, N., Butí, S., Tobin, M. J., Pantos, E., Prag, J. N. W., & Pradell, T. (2005). Advantages of the Use of SR-FT-IR Microspectroscopy: Applications to Cultural Heritage. Analytical Chemistry, 77(11), 3444–3451. DOI: https://doi.org/10.1021/ac050126k
Scardi, P., Ermrich, M., Fitch, A., Huang, E.-W., Jardin, R., Kuzel, R., Leineweber, A., Mendoza-Cuevas, A., Misture, S. T., Rebuffi, L., & Schimpf, C. (2018). Size–strain separation in diffraction line profile analysis. Journal of Applied Crystallography, 51(3), 831–843. DOI: https://doi.org/10.1107/S1600576718005411
Uda, M., Demortier, G., & Nakai, I. (Eds.). (2005). X-rays for archaeology. Springer. DOI: https://doi.org/10.1007/1-4020-3581-0
Visual C: # (USPTO S/N 78014060). (2000). [Computer software]. Microsoft Corporation.
Wolfram Mathematica: (Version 13). (2021). [Computer software]. Wolfram Research, Inc. https://www. wolfram.com/mathematica
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ariadna Mendoza Cuevas, Jorge Fernández de Cossio , Nehal Ali, Dina Atwa
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Copyright Declaration for articles published in this journal is the author’s right. Since manuscripts are published in an open access Journal, they are free to use, with their own attributions, in educational and non-commercial applications. The Journal has the right to make, in the original document, changes regarding linguistic norms, orthography, and grammar, with the purpose of ensuring the standard norms of the language and the credibility of the Journal. It will, however, respect the writing style of the authors. When necessary, conceptual changes, corrections, or suggestions will be forwarded to the authors. In such cases, the manuscript shall be subjected to a new evaluation after revision. Responsibility for the opinions expressed in the manuscripts lies entirely with the authors.
This journal is licensed with a license Creative Commons Attribution-NonCommercial 4.0 International.