An implementation of the partitioned Levenberg-Marquardt algorithm for applications in computer vision.

An implementation of the partitioned Levenberg-Marquardt algorithm for applications in computer vision.

Authors

  • José Alexandre de França Universidade Estadual de Londrina
  • Maria Bernadete de Morais França Universidade Estadual de Londrina
  • Marcela Hitomi Koyama Universidade Estadual de Londrina
  • Tiago Polizer da Silva Universidade Estadual de Londrina

DOI:

https://doi.org/10.5433/1679-0375.2009v30n1p51

Keywords:

Levenberg-Marquardt algorithm, Monocular Calibration, Newton's.

Abstract

At several applications of computer vision is necessary to estimate parameters for a specific model which  best fits  an experimental data set. For these cases,  a minimization algorithm might be used and one of the most popular is the Levenberg-Marquardt algorithm. Although several free applies from this algorithm are available, any of them has great features when the resolution of problem has  a sparse Jacobian matrix . In this case, it is possible to have a great reduce in the algorithm's complexity. This work presents a Levenberg-Marquardt algorithm implemented in cases which has a sparse Jacobian matrix. To illustrate this algorithm application, the camera calibration with 1D pattern is applied to solve the problem. Empirical results show that this method is able to figure out satisfactorily with few iterations, even with noise presence.

Downloads

Download data is not yet available.

Author Biographies

José Alexandre de França, Universidade Estadual de Londrina

Departamento de Engenharia Elétrica.

Maria Bernadete de Morais França, Universidade Estadual de Londrina

Departamento de Engenharia Elétrica.

Marcela Hitomi Koyama, Universidade Estadual de Londrina

Departamento de Engenharia Elétrica.

Tiago Polizer da Silva, Universidade Estadual de Londrina

Departamento de Engenharia Elétrica.

Published

2009-07-15

How to Cite

França, J. A. de, França, M. B. de M., Koyama, M. H., & Silva, T. P. da. (2009). An implementation of the partitioned Levenberg-Marquardt algorithm for applications in computer vision. Semina: Ciências Exatas E Tecnológicas, 30(1), 51–62. https://doi.org/10.5433/1679-0375.2009v30n1p51

Issue

Section

Original Article

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.

Loading...