Max-Min fairness-based resource allocation in massive MIMO systems

Max-Min fairness-based resource allocation in massive MIMO systems

Authors

  • Marcelo Henrique Jeronymo Universidade Estadual de Londrina - UEL
  • Taufik Abrão Universidade Estadual de Londrina - UEL https://orcid.org/0000-0001-8678-2805

DOI:

https://doi.org/10.5433/1679-0375.2022v43n1p45

Keywords:

Massive MIMO, Resource allocation, Energy efficiency, Spectral efficiency, Max-min fairness

Abstract

This work deals with power and spectrum allocation approaches for massive MIMO (M-MIMO) systems. An analysis is made to verify the efficiency of the solutions provided by schemes used for the spectral and energy efficiency (SE-EE) trade-off problem in massive antenna-based wireless communication systems. We first introduce the  Geometry Based Stochastic Model (GBSM) channel model (One-ring model), describing the behavior of a uniform linear array of antennas (ULA) arrangement, revealing how the channel parameters affect the channel capacity. We also show that under this model, the SE still increases without boundary when the massive number of base-station (BS) antennas $M$ increases, provided that pilot contamination is substantially mitigated or eliminated but when the number of users equipment (UEs) $K$ increases with a fixed number of antennas in the BS, there is a increasing limitation from the combiners in mitigating the inter-user interference, making decoding difficult. The downlink (DL) M-MIMO scenario is analyzed, by introducing the generalized power allocation problem and derived the max-min fairness scheme from it. We propose a procedure to solve the max-min problem and 

Downloads

Download data is not yet available.

Author Biographies

Marcelo Henrique Jeronymo, Universidade Estadual de Londrina - UEL

Undergraduated student, Electrical Engineering Department at the Universidade Estadual de Londrina, Londrina, Paraná.

Taufik Abrão, Universidade Estadual de Londrina - UEL

Prof. Dr., Electrical Engineering Department at the Universidade Estadual de Londrina, Londrina, Paraná

References

ALI, A.; CARVALHO, E. D.; HEATH, R. W. Linear receivers in non- stationary massive MIMO Channels with visibility regions. IEEE Wireless Communications Letters, Piscataway, v. 8, n. 3, p. 885–888, Jun. 2019.

ANDERSEN, M.; DAHL, J.; VANDENBERGHE, L. Cvxopt: python software package for convex optimization. [S. l.]: CVXOPT, 2021. Available from: https://cvxopt.org/. Access in: Sep. 20, 2021.

BJORNSON, E.; HOYDIS, J.; SANGUINETTI, L. Massive MIMO networks: Spectral, energy, and hardware efficiency. Foundations and Trends in Signal Processing, [Netherlands], v. 11, n. 3/4, p. 154–655, 2017.

BJORNSON, E.; SANGUINETTI, L.; WYMEERSCH, H.; HOYDIS, J.; MARZETTA, T. L. Massive MIMO is a reality – what is next? five promising research directions for antenna arrays. Digital Signal Processing, Duluth, v. 94, p. 3-20, 2019.

BOYD, S.; VANDENBERGHE, L. Convex optimization. Cambridge: Cambridge University Press, 2004.

CARVALHO, E. de; ALI, A.; AMIRI, A.; ANGJELICHINOSKI, M.; HEATH JUNIOR, R. W. Non-stationarities in extra-large scale massive MIMO. IEEE Wireless Communications, New York, v. 27, n. 4, p. 74-80, 2020.

JENG-SHIANN, J.; INGRAM, M. A. Spherical-wave model for short-range mimo. IEEE Transactions on Communications, New York, v. 53, n. 9, p. 1534– 1541, Sep. 2005.

KWON, J.-H.; CHO, J.; YU, B.; LEE, S.; JUNG, I.; HWANG, C.; KO, Y.-C. Spectral and energy efficient power allocation for mimo broadcast channels with individual delay and QoS constraints. Journal of Communications and Networks, [s. l.], v. 22, n. 5, p. 390– 398, 2020.

LI, H.; CHENG, J.; WANG, Z.; WANG, H. Joint antenna selection and power allocation for an energyefficient massive mimo system. IEEE Wireless Communications Letters, Piscataway, v. 8, n. 1, p. 257–260, 2019.

OLIVERAS MARTINEZ, A.; EGGERS, P.; CARVALHO, E. Geometry-based stochastic channel models for 5g: Extending key fea- tures for massive mimo. In: ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATIONS (PIMRC), 27., 2016, Valencia. Proceedings [. . . ]. Valencia: IEEE, 2016.p. 1–6.

PAYAMI, S.; TUFVESSON, F. Channel measurements and analysis for very large array systems at 2.6 ghz. In: EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 6., 2012, Prague. Proceedings [. . . ]. Prague: IEEE, 2012. P. 433–437.

SALH, A.; SHAH, N. S. M.; AUDAH, L.; ABDULLAH, Q.; JABBAR, W. A.; MOHAMAD, M. Energy-efficient power allocation and joint user association in multiuserdownlink massive mimo system. IEEE Access, Piscataway, v. 8, p. 1314 – 1326, Dec. 2019.

SANGUINETTI, L.; BJORNSON, E.; HOYDIS, J. Towards massive mimo 2.0: understanding spatial correlation, interference suppression, and pilot contamination. IEEE Transactions on Communications, New York, v.68, n. 1, p. 232–257, Jan. 2020.

ZHENG, K.; OU, S.; YIN, X. Massive mimo channel models: a survey. International Journal of Antennas and Propagation, Cairo, v. 2014,p. 1- 10, 2014.

ZHOU ZHOU, X. G.; FANG, J.; CHEN, Z. Spherical wave channel and analysis for large linear array in los conditions. IEEE Globecom Workshops (GC Wkshps), San Diego, p. 1–6, Dec. 2015.

Downloads

Published

2022-06-01

How to Cite

Jeronymo, M. H., & Abrão, T. (2022). Max-Min fairness-based resource allocation in massive MIMO systems. Semina: Ciências Exatas E Tecnológicas, 43(1), 45–54. https://doi.org/10.5433/1679-0375.2022v43n1p45

Issue

Section

Original Article

Most read articles by the same author(s)

1 2 3 > >> 
Loading...