Low-cost device for active saliva droplet filtration and pathogen inactivation

Low-cost device for active saliva droplet filtration and pathogen inactivation

Authors

DOI:

https://doi.org/10.5433/1679-0375.2021v42n1Suplp17

Keywords:

COVID-19, Ambient sanitation system, Electrostatic filter, Low-cost.

Abstract

This work presents a device capable of performing sanitization in environments using an electrostatic filter and ultraviolet light. Recognized techniques were employed in an innovative and low-cost construction model, like Corona Discharge and UVC germicidal light, using elements of easy acquisition and construction. The device consists of a tube with several electrostatic filters. On one side of the tube, an exhaust fan is installed to collect the air to be disinfected. So the air passes through the tubes with the electrostatic filter, which is responsible for collecting the particles suspended in the passing air, attracting them to the metal surface. Allied with this, UVC lights are also inserted in the structure, ensuring greater effectiveness in decontaminating the air that passes through the tubes. In the posterior side to the exhaust fan, the disinfected air is returned to the original environment. A Fluid dynamics simulation was made to investigate the airflow in a room. Standard strains for antimicrobial susceptibility testing were used for bioaerosols assay. The result is a low-cost equipment with great potential to deactivate several kinds of viruses, most especially the Sars-CoV-2 (Coronavirus), that is the main responsible for the global health crisis, designed to be used indoors with low ventilation.

Downloads

Download data is not yet available.

Author Biographies

Fernando Cardoso Castaldo, Universidade Tecnológica Federal do Paraná - UTFPR

PhD in Electrical Engineering from the Universidade Estadual de Campinas. Professor at the Universidade Tecnológica Federal do Paraná, Curitiba campus.

Luciane Agnoletti dos Santos Pedotti, Universidade Tecnológica Federal do Paraná - UTFPR

PhD in Electrical Engineering - UNICAMP by the State University of Campinas. Professor at the Universidade Tecnológica Federal do Paraná

Tania Lucia Monteiro, Universidade Tecnológica Federal do Paraná - UTFPR

PhD in Informatics from the Pontifícia Universidade Católica do Paraná - PUCPR. Professor at the Universidade Tecnológica Federal do Paraná

Gabriel Kovalhuk, Universidade Tecnológica Federal do Paraná - UTFPR

Master in Electrical Engineering and Industrial Informatics from the Universidade Tecnológica Federal do Paraná. 1st and 2nd degree professor at the Universidade Tecnológica Federal do Paraná.

Rafael Eleodoro de Góes, Universidade Tecnológica Federal do Paraná - UTFPR

PhD in photonics in engineering from the Universidade Tecnológica Federal do Paraná. Professor, Universidade Tecnológica Federal do Paraná

Isabelly Behlau Spindola, Universidade Tecnológica Federal do Paraná - UTFPR

Academic of the Mechanical Engineering course at the Universidade Tecnológica Federal do Paraná.

Alan Lugarini, Universidade Tecnológica Federal do Paraná - UTFPR

Master in Mechanical Engineering from the Universidade Tecnológica Federal do Paraná - UTFPR. He is currently a researcher at the Research Center for Rheology and Non-Newtonian Fluids (CERNN / UTFPR).

Admilson Teixeira Franco, Universidade Tecnológica Federal do Paraná - UTFPR

PhD in the area of Heat Transfer and Fluid Mechanics by the Faculty of Mechanical Engineering of UNICAMP. Professor at the FUniversidade Tecnológica Federal do Paraná - UTFPR, Campus Curitiba.

Antonio Kozlik Junior, Universidade Tecnológica Federal do Paraná - UTFPR

Master in Mechanical and Materials Engineering from the Universidade Tecnológica Federal do Paraná. Professor of the Mechanical Engineering Course at the Universidade Tecnológica Federal do Paraná.

Gustavo Henrique Couto, Universidade Tecnológica Federal do Paraná - UTFPR

Post-doctorate at PPGQ / UFPR carried out in a company (Novozymes Latin America Ltda). Professor at the Universidade Tecnológica Federal do Paraná (UTFPR), campus Curitiba.

References

ANVISA.Manual de segurança hospitalar. Brasília: Anvisa, 2020. Availablei:http://portal:anvisa:gov:br/documents/33852/271855/Seguran%C3%A7a+no+ambiente+hospitalar/473c5e32025a4dc2ab2efb5905d7233a.Accessedin: apr. 2020.

CENTER FOR DEVICES AND RADIOLOGICALHEALTH. Enforcement Policy for Sterilizers, Disinfec-tant Devices, and Air Purifiers During the CoronavirusDisease 2019 (COVID-19) Public Health Emergency.[Whashington]: FDA, 2020. Available in: https://www:fda:gov/regulatory-information/search-fda-guidance-documents/enforcement-policy-sterilizers-disinfectant-devices-andair-purifiers-during-coronavirus-disease. Accessed in: apr. 2020.

FALAGUASTA, M.C.R.Estudo do Desempenho deum Precipitador Eletrostático operando na captura departículas submicrométricas e nanométricas, Tese deDoutorado, UFSCAR, São Carlos, SP. 2005. 305p.

FARREN, A; YERALAN, S.Compositions and Methodsfor UV Sterilization. US 2014/0161663 A1. Deposit: 26Nov. 2013. Granting: 12 jun. 2014.

GEFTER, P.; KLOCHKOV, A.; MENEAR, John E.;NELSEN, Lyle D.Clean corona gas ionization.US8460433B2. Deposit: 24 apr. 2009. Granting: 09 Aug.2012.

GRIFFITHS, G. Skelmersdale; GAY, G. Norman Walter.Air Cleaning Device. EP1169131B1. Deposit: 12 Apr.2000. Granting: 22 Jun. 2005.

HARE, R. The Transmission of Respiratory Infections.Proceedings of the Royal Society of Medicine, [London],v. 57, n. 3, p. 221-230, 1964.

HAVENS, W. H; HENNICK; R. J.Sterilization Apparatus.US 8203124 B2. Deposit: 27 abr. 2007. Granting: 19 Jun.2012.

HUDSON, J. B.; SHARMA, M.; VIMALANATHAN,S.; Development of a Practical Method for Using OzoneGas as a Virus Decontaminating Agent, Ozone:Sci-ence & Engineering, v. 31, n. 3, p. 216-223, 2009. DOI:10.1080/01919510902747969. Accessed in: apr. 2020.

KAMPF, G.; TODT, D.; PFAENDER, S.; et al. Persistenceof coronaviruses on inanimate surfaces and their inacti-vation with biocidal agents.Journal of Hospital Infec-tion, London, v. 104, n. 3, p. 246–251, 2020. Available in:https://doi:org/10:1016/j:jhin:2020:01:022. Accessedin: apr. 2020.

LOWER,A. What Is A nElectrostatic Air Filter? Second Nature,[S.l.] .Availablein: https://www.secondnature.com/blog/around-the-house/electrostatic-air-filters. Accessed in: Apr, 2020.

MAZUMBAR, P. M. H.Species and Specificity: An Inter-pretation of the History of Immunology. Toronto: Univer-sity of Toronto, 1995.

MEIRA, C. R. Desempenho de um precipitador elet-rostático operando na remoção de nanopartículas deaerossóis. 2009. Dissertação (Mestrado) - Universidade Federal de São Carlos, São Carlos, 2009.

MILAN, A. What is the electrostatic air cleaner, and howit works?Air Purifier First, [S. l.],8 jan. 2018. Availablein: https://www.airpurifierfirst.com/blog/electrostatic-air-cleaner-works/. Accessed in: Apr, 2020.

OLNEY, Richard A.Electrostatic Air Cleaner.US4919693. Deposit: 29 mar. 1989. Granting: 24Apr. 1990.

RANGEL, M. C. Membranas Inorgânicas e reatores catalíticos. Química Nova, São Paulo, v.20, n.5 sep./oct.1997.

RIPPELMEYER, D. M.; MCELROY, J. W.ElectrostaticAir Cleaner. US6245131. Deposit: 02 Oct. 1998. Granting:12 Jun. 2001

SIM, K. M.; PARK, H. S.; BAE, G. N.; et al. Antimicro-bial nanoparticle-coated electrostatic air filter with highfiltration efficiency and low pressure drop.Science of theTotal Environment, Amsterdam, v. 533, p. 266–274, 2015.Available in: http://dx:doi:org/10:1016/j:scitotenv:2015:0:003. Accessed in: apr. 2020.

SHAM, J. C. K.;Ultraviolet Air Purifier. US 6464760B1. Deposit: 27 set. 2000. Granting: 15 out. 2002. US6464760 B1

SUMMERFELT, S. T. Ozonation and UV irradiation - Anintroduction and examples of current applications.Aqua-cultural Engineering, London, v. 28, n. 1/2, p. 21–36,2003.

VIEIRA, J. M.et al. What do we know about COVID-19?A review article.Revista da Associação Médica Brasileira,São Paulo, v. 66, n. 4, p. 534–540, 2020.

VIG, J.; LEBUS J., UV/Ozone Cleaning of Surfaces.IEEE Transactions on Parts, Hybrids, and Packag-ing, Canadá, v. 12, n. 4, p. 365-370, dec. 1976. Doi:10.1109/TPHP.1976.1135156. Accessed in: apr. 2020.

WHO - WORLD HEALTH ORGANIZATION.First dataon stability and resistance of SARS coronavirus compiledby members of WHO laboratory network. 2020. Availablein:https://www:who:int/health-topics/severe-acute-respiratorysyndrome/technical-guidance/laboratory/first-data-onstability-and-resistance-of-sars-coronavirus-compiledby-members-of-who-laboratory-network.Accessed in: apr. 2020.

Downloads

Published

2021-02-26

How to Cite

Castaldo, F. C., Pedotti, L. A. dos S., Monteiro, T. L., Kovalhuk, G., Góes, R. . E. de, Spindola, I. B., … Couto, G. H. (2021). Low-cost device for active saliva droplet filtration and pathogen inactivation. Semina: Ciências Exatas E Tecnológicas, 42(1Supl), 17–24. https://doi.org/10.5433/1679-0375.2021v42n1Suplp17

Similar Articles

You may also start an advanced similarity search for this article.

Loading...