Characterization of coagulase-positive Staphylococcus spp., antimicrobial resistance profile, and presence of enterotoxin-producing genes in goat milk in Paraná State

Autores/as

DOI:

https://doi.org/10.5433/1679-0359.2022v43n5p2309

Palabras clave:

Antimicrobial susceptibility, Biochemical tests, Enterotoxin, Public health

Resumen

Goat milk presents interesting characteristics to consumers, but the production of this food faces several challenges that influence its quality. Process failures from milking to processing and commercialization can expose milk to contamination by pathogenic microorganisms, including the coagulase-positive Staphylococcus group. Although Staphylococcus aureus is the most relevant species in mastitis and food poisoning, other species in this group are also important, especially those related to food poisoning. This study aimed to identify the coagulase-positive Staphylococcus species in goat milk using biochemical tests, determine the prevalence of antimicrobial resistance using the disc diffusion test, and investigate enterotoxin-producing genes, sea, seb, sec, sed, see, seg, seh, and sei by multiplex PCR. A total of 384 coagulase-positive Staphylococcus strains obtained from raw goat milk collected from nine farms in Paraná during four seasons of the year were studied. Biochemical tests showed that 85.69% of the 384 strains were S. aureus, followed by 9.38% of S. intermedius, 4.17% of S. hyicus and 0.78% of S. delphini. For the antimicrobial resistance test, up to three strains of each species identified as coagulase-positive Staphylococci were chosen from each farm, with a total of 74 strains. Of these, 27% (20/74) showed resistance to at least one antibiotic, and among all penicillin-resistant strains, 45% (9/20) also presented resistance to tetracycline. In the search for staphylococcal enterotoxin-producing genes, 49 S. aureus strains were studied; among them, 40.81% (20/49) presented enterotoxin-producing genes. The highest prevalence was detected for the sec gene, which was present in 22.44% (11/49) of the strains, followed by the seh gene in 18.36% (9/49), and the see gene was detected in 4.08% (2/49). It was concluded that S. aureus was the predominant species in raw goat milk, with a high prevalence of penicillin- and tetracycline-resistant Staphylococci and a significant number of strains with staphylococcal enterotoxin-producing genes. The strains studied carried enterotoxin-producing genes involved in food poisoning in humans, indicating that goat milk is a possible source of contamination and, therefore, a potential danger to public health.

Biografía del autor/a

Fernanda Yuri Rodrigues Tanaka, Universidade Estadual de Londrina

Doctoral Student of the Postgraduate Program in Animal Science, Universidade Estadual de Londrina, UEL, Londrina, PR, Brazil.

Fernanda Montanholi de Lira, Universidade Estadual de Londrina

Doctoral Student of the Postgraduate Program in Animal Science, Universidade Estadual de Londrina, UEL, Londrina, PR, Brazil.

Samanta Stinghen de Abreu, Universidade Estadual de Londrina

Master Student of the Postgraduate Program in Animal Science, UEL, Londrina, PR, Brazil. 

Stael Málaga Carrilho, Universidade Estadual de Londrina

Master Student of the Postgraduate Program in Animal Science, UEL, Londrina, PR, Brazil.

Edson Antonio Rios, Instituto Nacional de Ciência e Tecnologia para a Cadeia Produtiva do Leite

Dr. in Animal Science, UEL, Londrina, PR, Brasil.

 

Ronaldo Tamanini, Universidade Estadual de Londrina

Dr. in Animal Science, UEL, Londrina, PR, Brasil.

Elaine Maria Seles Dorneles, Universidade Federal de Lavras

Profa Dra, Universidade Federal de Lavras, UFLA, Lavras, MG, Brasil.

Natalia Gonzaga, Universidade Estadual de Londrina

Profa Dra, UEL, Department of Preventive Veterinary Medicine, Londrina, PR, Brazil.

Rafael Fagnani, Universidade Estadual de Londrina

Prof. Dr., UEL, Department of Preventive Veterinary Medicine, Londrina, PR, Brazil.

Ulisses de Pádua Pereira, Universidade Estadual de Londrina

Prof. Dr., UEL, Department of Preventive Veterinary Medicine, Londrina, PR, Brazil.

Citas

Aragon-Alegro L. C., Konta, E. M., Suzuki, K., Silva, M. G., Fernandes, A., Jr., Rall, R., & Rall, V. L. M. (2007). Occurrence of coagulase-positive Staphylococcus in various food products commercialized in Botucatu, SP, Brazil and detection of toxins from food and isolated strains. Food Control, 18(6), 630-634. doi: 10.1016/j.foodcont.2006.02.010 DOI: https://doi.org/10.1016/j.foodcont.2006.02.010

Aras, Z., Aydin, I., & Kav, K. (2012). Isolation of methicillin-resistant Staphylococcus aureus from caprine mastitis cases. Small Ruminant Research, 102(1), 68-73. doi: 10.1016/j.smallrumres.2011.08.014 DOI: https://doi.org/10.1016/j.smallrumres.2011.08.014

Arcuri, E. F., Angelo, F. F., Guimarães, M. F. M., Talon, R., Borges, M. F., Leroy, S., Loiseau, G., Lange, C. C., Andrade, N. J., & Montet, D. (2010). Toxigenic status of Staphylococcus aureus isolated from bovine raw milk and Minas frescal cheese in Brazil. Journal of Food Protection, 73(12), 2225-2231. doi: 10. 4315/0362-028X-73.12.2225 DOI: https://doi.org/10.4315/0362-028X-73.12.2225

Argudín, M. A., Mendoza, M. C., & Rodicio, M. R. (2010). Food poisoning and Staphylococcus aureus enterotoxins. Toxins, 2(7), 1751-1773. doi: 10.3390/toxins2071751 DOI: https://doi.org/10.3390/toxins2071751

Balthazar, C. F., Pimentel, T., Ferrão, L. L., Almada, C. N., Santillo, A., Albenzio, M., Mollakhalili, N., Mortazavian, A. M., Nascimento, J. S., Silva, M. C., Freitas, M. Q., Sant'ana, A. S., Granato, D., & Cruz, A. G. (2017). Sheep milk: physicochemical characteristics and relevance for functional food development. Comprehensive Reviews in Food Science and Food Safety, 16(2), 247-262. doi: 10.1111/1541-4337.122 50 DOI: https://doi.org/10.1111/1541-4337.12250

Becker, K., Roth, R., & Peters, G. (1998). Rapid and specific detection of toxigenic Staphylococcus aureus: use of two multiplex PCR enzyme immunoassays for amplification and hybridization of staphylococcal enterotoxin genes, exfoliative toxin genes, and toxic shock syndrome toxin 1 gene. Journal of Clinical Microbiology, 36(9), 2548-2553. doi: 10.1128/JCM.36.9.2548-2553.1998 DOI: https://doi.org/10.1128/JCM.36.9.2548-2553.1998

Bencardino, D., & Vitali, L. A. (2019). Staphylococcus aureus carriage among food handlers in a pasta company: pattern of virulence and resistance to linezolid. Food Control, 96(12), 351-356. doi: 10.1016/ j.foodcont.2018.09.031 DOI: https://doi.org/10.1016/j.foodcont.2018.09.031

Bonsaglia, E. C. R., Silva, N. C. C., Rossi, B. F., Camargo, C. H., Dantas, S. T. A., Langoni, H., Guimarães, F. F., Lima, F. S., Fitzgerald, J. R., Fernandes, A., Jr., & Rall, V. L. M. (2018). Molecular epidemiology of methicillin-susceptible Staphylococcus aureus (MSSA) isolated from milk of cows with subclinical mastitis. Microbial Pathogenesis, 124(2018), 130-135. doi: 10.1016/j.micpath.2018.08.031 DOI: https://doi.org/10.1016/j.micpath.2018.08.031

Chajęcka-Wierzchowska, W., Gajewska, J., Wiśniewski, P., & Zadernowska, A. (2020). Enterotoxigenic potential of coagulase-negative staphylococci from ready-to-eat food. Pathogens, 9(734), 1-12. doi: 10. 3390/pathogens9090734 DOI: https://doi.org/10.3390/pathogens9090734

Claeys, W. L., Verraes, C., Cardoen, S., De Block, J., Huyghebaert, A., Raes, K., Dewettinck, K., & Herman, L. (2014). Consumption of raw or heated milk from different species: an evaluation of the nutritional and potential health benefits. Food Control, 42(2014), 188-201. doi: 10.1016/j.foodcont.2014.01.045 DOI: https://doi.org/10.1016/j.foodcont.2014.01.045

Clinical and Laboratory Standards Institute (2021). Performance standards for antimicrobial susceptibility testing (31nd ed.). CLSI.

Costa, G. M., Paiva, L. V., Piccoli, R. H., Figueiredo, D. J., Pereira, U. P., & Silva, N. (2010). Evaluation of a simplified key for the identification of coagulase-positive Staphylococcus isolated from bovine mastitis. Acta Scientiarum. Biological Sciences, 32(4), 403-406. doi: 10.4025/actascibiolsci.v32i4.6276 DOI: https://doi.org/10.4025/actascibiolsci.v32i4.6276

Cretenet, M., Even, S., & Le Loir, Y. (2011). Unveiling Staphylococcus aureus enterotoxin production in dairy products: a review of recent advances to face new challenges. Dairy Science & Technology, 91(2), 127-150. doi: 10.1007/s13594-011-0014-9 DOI: https://doi.org/10.1007/s13594-011-0014-9

De Buyser, A. L., Janin, F., & Dilasser, F. (1985). Contamination of ewe cheese with Staphylococcus aureus: study of an outbreak of food poisoning. Zentralblatt fur Bakteriologie, Mikrobiologie and Hygiene, 14(1), 677-678.

De Leon, C. M. C. G., Sousa, F. G. C., Saraiva, M. M. S., Givisiez, P. E. N., Silva, N. M. V., Vieira, R. F. C., & Oliveira, C. J. B. (2020). Equipment contact surfaces as sources of Staphylococcus carrying enterotoxin encoding genes in goat milk dairy plants. International Dairy Journal, 11(10), 1-20. doi: 10.1016/j.idairyj. 2020.104827 DOI: https://doi.org/10.1016/j.idairyj.2020.104827

Fetsch, A., Contzen, M., Hartelt, K., Kleiser, A., Maassen, S., Rau, J., Kraushaar, Layer, B. F., & Strommenger, B. (2014). Staphylococcus aureus food-poisoning outbreak associated with the consumption of ice-cream. International Journal of Food Microbiology, 187(2014), 1-6. doi: 10.1016/j.ijfoodmicro.2014.06.017 DOI: https://doi.org/10.1016/j.ijfoodmicro.2014.06.017

Fisher, E. L., Otto, M., & Cheung, G. Y. C. (2018). Basis of virulence in enterotoxin-mediated staphylococcal food poisoning. Frontiers in Microbiology, 9(436), 1-18. doi: 10.3389/fmicb.2018.00436 DOI: https://doi.org/10.3389/fmicb.2018.00436

Fooladi, A. A., Tavakoli, H. R., & Naderi, A. (2010). Detection of enterotoxigenic Staphylococcus aureus isolates in domestic dairy products. Iranian Journal of Microbiology, 2(3), 137-142.

Gonzales-Barron, U., Gonçalves-Tenório, A., Rodrigues, V., & Cadavez, V. (2017). Foodborne pathogens in raw milk and cheese of sheep and goat origin: a meta-analysis approach. Current Opinion in Food Science, 18(2017), 7-13. doi: 10.1016/j.cofs.2017.10.002 DOI: https://doi.org/10.1016/j.cofs.2017.10.002

Hennekinne, J., De Buyser, M. L., & Dragacci, S. (2012). Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbioliogy Reviews, 36(4), 815-836. doi: 10. 1111/j.1574-6976.2011.00311.x DOI: https://doi.org/10.1111/j.1574-6976.2011.00311.x

Homsombat, T., Boonyayatra, S., Awaiwanont, N., & Pichpol, D. (2021). Effect of temperature on the expression of classical enterotoxin genes among staphylococci associated with bovine mastitis. Pathogens, 10(8), 1-11. doi: 10.3390/pathogens10080975 DOI: https://doi.org/10.3390/pathogens10080975

Jarraud, S., Cozon, G., Vandenesch, F., Bes, M., Etienne, J., & Lina, G. (1999). Involvement of enterotoxins G and I in staphylococcal toxic shock syndrome and staphylococcal scarlet fever. Journal of Clinical Microbiology, 37(8), 2446-2449. doi: 10.1128/JCM.37.8.2446-2449.1999 DOI: https://doi.org/10.1128/JCM.37.8.2446-2449.1999

Jarraud, S., Peyrat, M. A., Lim, A., Tristan, A., Bes, M., Mougel, C., Etienne, J., Vandenesch, F., Bonneville, M., & Lina, G. (2001). Egc, a highly prevalent operon of enterotoxin gene, forms a putative nursery of superantigens in Staphylococcus aureus. Journal of Immunology, 166(1), 669-677. doi: 10.4049/ jimmunol.166.1.669 DOI: https://doi.org/10.4049/jimmunol.166.1.669

Jay, M. J., Loessner, J. M., & Golden, A. D. (2005). Staphylococcal gastroenteritis. In J. M. Jay, M. J. Loessner, & D. A. Golden, Modern food microbiology (pp. 545-560). New York.

Johler, S., Macori, G., Bellio, A., Acutis, P. L., Gallina, S., & Decastelli, L. (2018). Characterization of Staphylococcus aureus isolated along the raw milk cheese production process in artisan dairies in Italy. Journal of Dairy Science, 101(4), 2915-2920. doi: 10.3168/jds.2017-13815 DOI: https://doi.org/10.3168/jds.2017-13815

Jorgensen, H. J., Mathisen, T., Lovseth, A., Omoe, K., Qvale, K. S., & Loncarevic, S. (2005). An outbreak of staphylococcal food poisoning caused by enterotoxin H in mashed potato made with raw milk. Microbiology Letters, 252(2), 267-272. doi: 10.1016/j.femsle.2005.09.005 DOI: https://doi.org/10.1016/j.femsle.2005.09.005

Jung, H. R., & Lee, Y. J. (2022). Characterization of virulence factors in enterotoxin-producing Staphylococcus aureus from bulk tank milk. Animals, 12(301), 1-10. doi: 10.3390/ani12030301 DOI: https://doi.org/10.3390/ani12030301

Kadariya, J., Smith, T. C., & Thapaliya, D. (2014). Staphylococcus aureus and staphylococcal food-borne disease: an ongoing challenge in public health. BioMed Research International, 2014(2014), 1-9. doi: 10. 1155/2014/827965 DOI: https://doi.org/10.1155/2014/827965

Kluytmans, J., & Wertheim, H. F. L. (2005). Nasal carriage of Staphylococcus aureus and prevention of nosocomial infections. Infection, 33(1), 3-7. doi: 10.1007/s15010-005-4012-9 DOI: https://doi.org/10.1007/s15010-005-4012-9

Kümmel, J., Stessl, B., Gonano, M., Walcher, G., Bereuter, O., Fricker, M., Grunert, T., Wagner, M., & Ehling-Schulz, M. (2016). Staphylococcus aureus entrance into the dairy chain: tracking S. aureus from dairy cow to cheese. Frontiers in Microbiology, 7(1603), 1-11. doi: 10.3389/fmicb.2016.01603 DOI: https://doi.org/10.3389/fmicb.2016.01603

Laganà, P., Delia, S., Di Pietro, A., Costa, A., & Coniglio, M. A. (2020). Antibiotic resistance in bacteria strains isolated from foods and correlated environments. Progress in Nutrition, 22(3), 1-8. doi: 10.23751/ pn.v22i3.10407

Le Loir, Y., Baron, F., & Gautier, M. (2003). Staphylococcus aureus and food poisoning. Genetics and Molecular Research, 2(1), 63-76.

Le Loir, Y., Baron, F., & Gautier, M. (2009). Staphylococcal food poisoning. In F. Lang, Encyclopedia of molecular mechanisms of disease (pp. 1974-1975). Berlin, Heidelberg.

Linage, B., Rodríguez-Calleja, J. M., Otero, A., García-López, M. L., & Santos, J. A. (2012). Characterization of coagulase-positive staphylococci isolated from tank and silo ewe milk. Journal of Dairy Science, 95(4), 1639-1644. doi: 10.3168/jds.2011-4734 DOI: https://doi.org/10.3168/jds.2011-4734

Lowy, F. D. (2003). Antimicrobial resistance: the example of Staphylococcus aureus. The Journal of Clinical Investigation, 111(9), 265-1273. doi: 10.1172/JCI18535 DOI: https://doi.org/10.1172/JCI18535

Malachowa, N., & Deleo, F. R. (2010). Mobile genetic elements of Staphylococcus aureus. Cellular and Molecular Life Sciences, 67(18), 3057-3071. doi: 10.1007/s00018-010-0389-4 DOI: https://doi.org/10.1007/s00018-010-0389-4

Moroni, P., Vellere, F., Antonini, M., Pisoni, G., Ruffo, G., & Carli, S. (2004). Antibiotic susceptibility of coagulase-negative staphylococci isolated from goats’ milk. International Journal of Antimicrobial Agents, 23(6), 637-640. doi: 10.1016/j.ijantimicag.2003.10.007 DOI: https://doi.org/10.1016/j.ijantimicag.2003.10.007

Obaidat, M. M., Roess, A. A., Mahasneh, A. A., & Al-Hakimi, R. A. (2018). Antibiotic-resistance, enterotoxin gene profiles and farm-level prevalence of Staphylococcus aureus in cow, sheep and goat bulk tank milk in Jordan. International Dairy Journal, 81(2018), 28-34. doi: 10.1016/j.idairyj.2018.02.001 DOI: https://doi.org/10.1016/j.idairyj.2018.02.001

Omoe, K., Ishikawa, M., Shimoda, Y., Hu, D., Ueda, S., & Shinagawa, K. (2002). Detection of seg, seh, and sei genes in Staphylococcus aureus isolates and determination of the enterotoxin productivities of S. aureus isolates harboring seg, seh, or sei genes. Journal of Clinical Microbiology, 40(3), 857-862. doi: 10.1128/JCM.40.3.857-862.2002 DOI: https://doi.org/10.1128/JCM.40.3.857-862.2002

Ostyn, A., De Buyser, M. L., Guillier, F., Groult, J., Félix, B., Salah, S., Delmas, G., & Hennekinne, J. A. (2010). First evidence of a food poisoning outbreak due to staphylococcal enterotoxin type E, France, 2009. Eurosurveillance, 15(13), 10-13. doi:10.2807/ese.15.13.19528-en DOI: https://doi.org/10.2807/ese.15.13.19528-en

Palii, А. P., Paliy, A. P., Rodionova, K. O., Zolotaryova, S. A., Kushch, L. L., Borovkova, V. M., Kazakov, M. V., Pavlenko, I. S., Kovalchuk, Y. O., Kalabska, V. S., Kovalenko, O. V., Pobirchenko, O. M., & Umrihina, O. S. (2020). Microbial contamination of cow’s milk and operator hygiene. Ukrainian Journal of Ecology, 10(2), 392-397. doi: 10.15421/2020_113 DOI: https://doi.org/10.15421/2020_4

Qian, W., Shen, L., Li, X., Wang, T., Liu, M., Wang, W., Fu, Y., & Zeng, Q. (2019). Epidemiological characteristics of Staphylococcus aureus in raw goat milk in Shaanxi Province, China. Antibiotics, 8(3), 141, 1-12. doi: 10.3390/antibiotics8030141 DOI: https://doi.org/10.3390/antibiotics8030141

Ribeiro, J. C., Jr., Tamanini, R., Soares, B. F., Oliveira, A. M., Silva, F. G., Silva, F. F., Augusto, N. A., & Beloti, V. (2016). Efficiency of boiling and four other methods for genomic DNA extraction of deteriorating spore-forming bacteria from milk. Semina: Ciências Agrárias, 37(5), 3069-3078. doi: 10.5433/1679-0359.2016v37n5p3069 DOI: https://doi.org/10.5433/1679-0359.2016v37n5p3069

Rios, E. A., Pereira, J. R., Tamanini, R., Mareze, J., Gonzaga, N., Ossugui, E., Nero, L. A., & Beloti, V. (2018). Quality of goat’s milk produced on farms in the Paraná State - Brazil. Semina: Ciências Agrárias, 39(6), 2425-2436. doi: 10.5433/1679-0359.2018v39n6p2425 DOI: https://doi.org/10.5433/1679-0359.2018v39n6p2425

Rola, J. G., Sosnowski, M., Ostrowska, M., & Osek, J. (2015). Prevalence and antimicrobial resistance of coagulase-positive staphylococci isolated from raw goat milk. Small Ruminant Research, 123(1), 124-128. doi: 10.1016/j.smallrumres.2014.11.010 DOI: https://doi.org/10.1016/j.smallrumres.2014.11.010

Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M. A., Roy, S. L., Jones, J. L., & Griffin, P. M. (2011). Foodborne illness acquired in the United States—major pathogens. Emerging Infectious Diseases, 17(1), 7-15. doi: 10.3201/eid1701.P11101 DOI: https://doi.org/10.3201/eid1701.P11101

Schelin, J., Wallin-Carlquist, N., Cohn, M. T., Lindqvist, R., & Barker, G. C. (2011). The formation of Staphylococcus aureus enterotoxin in food environments and advances in risk assessment. Virulence, 2(6), 580-592. doi: 10.4161/viru.2.6.18122 DOI: https://doi.org/10.4161/viru.2.6.18122

Schmid, D., Fretz, R., Winter, P., Mann, M., Höger, G., Stöger, A., Ruppitsch, W., Ladstätter, J., Mayer, N., Martin, A., & Allerberger, F. (2009). Outbreak of staphylococcal food intoxication after consumption of pasteurized milk products. Wiener Klinische Wochenschrift, 121(3), 125-131. doi: 10.1007/s00508-008-1132-0 DOI: https://doi.org/10.1007/s00508-008-1132-0

Sharma, C., Rokana, N., Chandra, M., Singh, B. P., Gulhane, R. D., Gill, J. P. S., Ray, P., Puniya, A. K., & Panwar, H. (2018). Antimicrobial resistance: its surveillance, impact, and alternative management strategies in dairy animals. Frontiers in Veterinary Science, 4(237), 1-27. doi: 10.3389/fvets.2017.00237 DOI: https://doi.org/10.3389/fvets.2017.00237

Silveira, V., Fº., Luz, I. S., Campos, A. P. F., Silva, W. M., Barros, M. P. S. B., Medeiros, E. S., Freitas, M. F. L., Mota, R. A., Sena, M. J., & Leal-Balbino, T. C. (2014). Antibiotic resistance and molecular analysis of Staphylococcus aureus isolated from cow's milk and dairy products in northeast Brazil. Journal of Food Protection, 77(4), 583-591. doi: 10.4315/0362-028X. JFP-13 -343 DOI: https://doi.org/10.4315/0362-028X.JFP-13-343

Smyth, D. S., Hartigan, P. J., Meaney, W. J., Fitzgerald, J. R., Deobald, C. F., Bohach, G. A., & Smyth, C. J. (2005). Superantigen genes encoded by the egc cluster and SaPIbov are predominant among Staphylococcus aureus isolates from cows, goats, sheep, rabbits and poultry. Journal of Medical Microbiology, 54(4), 401-411. doi: 10.1099/jmm.0.45863-0 DOI: https://doi.org/10.1099/jmm.0.45863-0

Srinivasan, V., Sawant, A. A., Gillespie, B. E., Headrick, S. J., Ceasaris, L., & Oliver, S. P. (2006). Prevalence of enterotoxin and toxic shock syndrome toxin genes in Staphylococcus aureus isolated from milk of cows with mastitis. Foodborne Pathogens and Disease, 3(3), 274-284. doi: 10.1089/fpd.2006.3.274 DOI: https://doi.org/10.1089/fpd.2006.3.274

Vyletělová, M., Hanuš, O., Karpíšková, R., & Štástková, Z. (2016). Occurrence and antimicrobial sensitivity in staphylococci isolated from goat, sheep and cow’s milk. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 59(3), 209-214. doi: 10.11118/actaun201159030209 DOI: https://doi.org/10.11118/actaun201159030209

Wang, X., Li, G., Xia, X., Yang, B., Xi, M., & Meng, J. (2014). Antimicrobial susceptibility and molecular typing of methicillin-resistant Staphylococcus aureus in retail foods in Shaanxi, China. Foodborne Pathogens and Disease, 11(4), 281-286. doi: 10.1089/fpd.2013.1643 DOI: https://doi.org/10.1089/fpd.2013.1643

Zschöck, M., Kloppert, B., Wolter, W., Hamann, H. P., & Lämmler, C. (2005). Pattern of enterotoxin genes seg, seh, sei and sej positive Staphylococcus aureus isolated from bovine mastitis. Veterinary Microbiology, 108(3), 243-249. doi: 10.1016/j.vetmic.2005.02.012 DOI: https://doi.org/10.1016/j.vetmic.2005.02.012

Descargas

Publicado

2022-11-17

Cómo citar

Tanaka, F. Y. R., Lira, F. M. de, Abreu, S. S. de, Carrilho, S. M., Rios, E. A., Tamanini, R., … Pereira, U. de P. (2022). Characterization of coagulase-positive Staphylococcus spp., antimicrobial resistance profile, and presence of enterotoxin-producing genes in goat milk in Paraná State . Semina: Ciências Agrárias, 43(5), 2309–2322. https://doi.org/10.5433/1679-0359.2022v43n5p2309

Número

Sección

Artigos

Artículos más leídos del mismo autor/a

1 2 3 4 5 6 > >>