Chromosome doubling by colchicine injection and haploidy induction in tropical genotypes of common and supersweet corn
DOI:
https://doi.org/10.5433/1679-0359.2025v46n2p517Keywords:
Zea mays var. saccharate, Haploidy induction rate, Double-haploids, Gimnogenetic inducerAbstract
The double-haploid technology in maize was developed in temperate environments, using germplasm and inducers adapted for these environments, with the aim of accelerating the obtaining of homozygous inbred lines. Therefore, to advance this technology in tropical environments, research involving germplasm and inducers adapted for this environment is necessary. The objectives were to determine the haploidy induction rate in tropical common and supersweet corn populations, employing a tropicalized gymnogenetic inducer population, and to identify the effectiveness of chromosome doubling by colchicine injection. The haploidy inducer PI4003 was used as a male parent and crossed with 25 tropical maize populations (23 common and two supersweet). The putative haploid seeds, classified by the R1-nj gene marker, were sown in trays with peat during the 2020/21 and 2021/22 harvest seasons, and 100 µL of a solution of 0.125% colchicine and 0.5% dimethyl sulfoxide was injected into each haploid seedling at the V2 stage. The next day, the treated seedlings were transplanted to an irrigated field. The PI4003 inducer presented a haploidy induction rate ranging from 0.9% to 5%. There were significant differences to tropical genotypes and harvests for survival rates, reproduction rates, and overall success rates. The overall success rate ranged from 2.9% to 34%. The chromosome doubling method by colchicine injection proved to be effective, with lower colchicine consumption per haploid seedling treated and a reduction in the generation of toxic waste for disposal.
Downloads
References
Baleroni, A. G., Ré, F., Pelozo, A., Kamphorst, S. H., Carneiro, J. W. P., Rossi, R. M., & Scapim, C. A. (2021). Identification of haploids and diploids in maize using seedling traits and flow cytometry. Crop Breeding and Applied Biotechnology, 21(4), 1-8. doi: 10.1590/1984-70332021v21n4a54
Battistelli, G. M., Von Pinho, R. G., Justus, A., Couto, E. G. O., & Balestre, M. (2013). Production and identification of doubled haploids in tropical maize. Genetics and Molecular Research, 12(4), 4230-4242. doi: 10.4238/2013.October.7.9
Chaikam, V., Gowda, M., Martinez, L., Ochieng, J., Omar, H. A., & Prasanna, B. M. (2020). Improving the efficiency of colchicine-based chromosomal doubling of maize haploids. Plants, 9(4), 459. doi: 10.3390/ plants9040459
Chaikam, V., Gowda, M., Nair, S. K., Melchinger, A. E., & Boddupalli, P. M. (2019a). Genome-wide association study to identify genomic regions influencing spontaneous fertility in maize haploids. Euphytica, 215, 138. doi: 10.1007/s10681-019-2459-5
Chaikam, V., Lopez, L. A., Martinez, L., Burgueño, J., & Boddupalli, P. M. (2017). Identification of in vivo induced maternal haploids in maize using seedling traits. Euphytica, 213, 1-9. doi: 10.1007/s10681-017-1968-3
Chaikam, V., Martinez, L., Melchinger, A. E., Schipprack, W., & Boddupalli, P. M. (2016). Development and validation of red root marker‐based haploid inducers in maize. Crop Science, 56(4), 1678-1688. doi: 10. 2135/cropsci2015.10.0653
Chaikam, V., Nair, S. K., Martinez, L., Lopez, L. A., Utz, H. F., Melchinger, A. E., & Boddupalli, P. M. (2018). Marker-assisted breeding of improved maternal haploid inducers in maize for the tropical/subtropical regions. Frontiers in Plant Science, 9, 1527. doi: 10.3389/fpls.2018.01527
Chaikam, V., Molenaar, W., Melchinger, A. E., & Boddupalli, P. M. (2019b). Doubled haploid technology for line development in maize: technical advances and prospects. Theoretical and Applied Genetics, 132, 3227-3243. doi: 10.1007/s00122-019-03433-x
Chalyk, S. T. (1999). Creating new haploid-inducing lines of maize. Maize Genetics Cooperation Newsletter, 73, 53-54. doi: 10.5555/19991611314
Chase, S. S. (1969). Monoploids and monoploid-derivatives of maize (Zea mays L.). The Botanical Review, 35, 117-168. doi: 10.1007/BF02858912
Chidzanga, C., Muzawazi, F., Midzi, J., & Hove, T. (2017). Production and use of haploids and doubled haploid in maize breeding: a review. African Journal of Plant Breeding, 4(4), 201-213. https://www.internationalscholarsjournals.com/articles/production-and-use-of-haploids-and-doubled-haploid-in-maize-breeding-a-review.pdf
Coe, E. H., Jr. (1959). A line of maize with high haploid frequency. The American Naturalist, 93(873), 381-382. doi: 10.1086/282098
Couto, E. G. D. O., Pinho, É. V. D. R. V., Pinho, R. G. V., Veiga, A. D., Bustamante, F. D. O., & Dias, K. O. D. G. (2015). In vivo haploid induction and efficiency of two chromosome duplication protocols in tropical maize. Ciência e Agrotecnologia, 39(5), 435-442. doi: 10.1590/S1413-70542015000500002
Dang, N. C., Munsch, M., Aulinger, I., Renlai, W., & Stamp, P. (2012). Inducer line generated double haploid seeds for combined waxy and opaque 2 grain quality in subtropical maize (Zea mays. L.). Euphytica, 183, 153-160. doi: 10.1007/s10681-011-0423-0
De La Fuente, G. N., Frei, U. K., Trampe, B., Ren, J., Bohn, M., Yana, N., Verzegnazzi, A,. Murray, S. C., & Lübberstedt, T. (2020). A diallel analysis of a maize donor population response to in vivo maternal haploid induction: II. Haploid male fertility. Crop Science, 60(2), 873-882. doi: 10.1002/csc2.20021
Deimling, S., Röber, F., & Geiger, H. H. (1997). Methodik und genetik der in-vivo-haploideninduktion bei mais. Vortr Pflanzenzüchtg, 38, 203-224.
Eder, J., & Chalyk, S. (2002). In vivo haploid induction in maize. Theoretical and Applied Genetics, 104, 703-708. doi: 10.1007/s00122-001-0773-4
Kebede, A. Z., Dhillon, B. S., Schipprack, W., Araus, J. L., Bänziger, M., Semagn, K., Alvarado, G., & Melchinger, A. E. (2011). Effect of source germplasm and season on the in vivo haploid induction rate in tropical maize. Euphytica, 180, 219-226. doi: 10.1007/s10681-011-0376-3
Kermicle, J. L. (1969). Androgenesis conditioned by a mutation in maize. Science, 166(3911), 1422-1424. doi: 10.1126/science.166.3911.1422
Khulbe, R. K., Pattanayak, A., Kant, L., Bisht, G. S., Pant, M. C., Pandey, V., Kapil, R., & Mishra, N. C. (2020). Doubled haploid production in maize under sub-montane Himalayan conditions using R1-nj-based haploid inducer TAILP1. Indian Journal of Genetics and Plant Breeding, 80(3), 261-266. doi: 10. 31742/IJGPB.80.3.4
Lashermes, P., & Beckert, M. (1988). Genetic control of maternal haploidy in maize (Zea mays L.) and selection of haploid inducing lines. Theoretical and Applied Genetics, 76, 405-410. doi: 10.1007/ BF00265341
Liu, C., Li, J., Chen, M., Li, W., Zhong, Y., Dong, X., Xu, X., Chen, C., Tian, X., & Chen, S. (2022). Development of high-oil maize haploid inducer with a novel phenotyping strategy. The Crop Journal, 10(2), 524-531. doi: 10.1016/j.cj.2021.07.009
Maqbool, M. A., Beshir, A., & Khokhar, E. S. (2020). Doubled haploids in maize: development, deployment, and challenges. Crop Science, 60(6), 2815-2840. doi: 10.1002/csc2.20261
Melchinger, A. E., Brauner, P. C., Böhm, J., & Schipprack, W. (2016a). In vivo haploid induction in maize: comparison of different testing regimes for measuring haploid induction rates. Crop Science, 56(3), 1127-1135. doi: 10.2135/cropsci2015.11.0668
Melchinger, A. E., Molenaar, W. S., Mirdita, V., & Schipprack, W. (2016b). Colchicine alternatives for chromosome doubling in maize haploids for doubled‐haploid production. Crop Science, 56(2), 559-569. doi: 10.2135/cropsci2015.06.0383
Molenaar, W. S., Schipprack, W., & Melchinger, A. E. (2018). Nitrous oxide‐induced chromosome doubling of maize haploids. Crop Science, 58(2), 650-659. doi: 10.2135/cropsci2017.07.0412
Molenaar, W. S., Schipprack, W., Brauner, P. C., & Melchinger, A. E. (2019). Haploid male fertility and spontaneous chromosome doubling evaluated in a diallel and recurrent selection experiment in maize. Theoretical and Applied Genetics, 132, 2273-2284. doi: 10.1007/s00122-019-03353-w
Prasanna, B. M., Chaikam, V., & Mahuku, G. (2012). Doubled haploid technology in maize breeding: theory and practice. CIMMYT.
Prigge, V., Sánchez, C., Dhillon, B. S., Schipprack, W., Araus, J. L., Bänziger, M., & Melchinger, A. E. (2011). Doubled haploids in tropical maize: I. Effects of inducers and source germplasm on in vivo haploid induction rates. Crop Science, 51(4), 1498-1506. doi: 10.2135/cropsci2010.10.0568
Prigge, V., Schipprack, W., Mahuku, G., Atlin, G. N., & Melchinger, A. E. (2012). Development of in vivo haploid inducers for tropical maize breeding programs. Euphytica, 185, 481-490. doi: 10.1007/s10681-012-0657-5
Ren, X., Ci, J., Cui, X., & Yang, W. (2018). Doubling effect of anti-microtubule herbicides on the maize haploid. Emirates Journal of Food and Agriculture, 30(10), 903-908. doi: 10.9755/ejfa.2018.v30.i10.18 28
Ribeiro, C. B., Rezende, B. A., Bueno, J. S. de S., Fº., Silva, É. D. B. da, Dias, K. O. das G., Nunes, J. A. R., Carvalho, P. L. S., Mota, S. F., Bustamante, F. de O., Diniz, R. P., Castro, C. E. C. de, Camargos, R. B., Nascimento, J., & Souza, J. C. de. (2020). Breeding strategies for tropical maize targeting in vivo haploid inducers. Crop Breeding and Applied Biotechnology, 20(2), e265120216. doi: 10.1590/1984-70332020 v20n2a32
Röber, F. K., Gordillo, G. A., & Geiger, H. H. (2005). In vivo haploid introduction in maize - performance of new inducers and significance of doubled haploid lines in hybrid breeding. Maydica, 50, 275-283.
Rotarenco, V., Dicu, G., State, D., & Fuia, S. (2010). New inducers of maternal haploids in maize. Maize Genetics Cooperation Newsletter, 84, 1-7. https://mnl.maizegdb.org/84/HTML/15rotarenco.htm
Sekiya, A., Pestana, J. K., Silva, M. G. B. D., Krause, M. D., Silva, C. R. M. D., & Ferreira, J. M. (2020). Haploid induction in tropical supersweet corn and ploidy determination at the seedling stage. Pesquisa Agropecuária Brasileira, 55, e00968. doi: 10.1590/s1678-3921.pab2020.v55.00968
Trentin, H. U., Batîru, G., Frei, U. K., Dutta, S., & Lübberstedt, T. (2022). Investigating the effect of the interaction of maize inducer and donor backgrounds on haploid induction rates. Plants, 11(12), 1527. doi: 10.3390/plants11121527
Yu, W., & Birchler, J. A. (2016). A green fluorescent protein-engineered haploid inducer line facilitates haploid mutant screens and doubled haploid breeding in maize. Molecular Breeding, 36(5), 1-12. doi: 10. 1007/s11032-015-0428-9
Zararsiz, D., Öztürk, L., Yanikoğlu, S., Turgut, İ., Kizik, S., & Bilgin, B. (2019). Production of double haploid plants using in vivo haploid techniques in Corn. Tarim Bilimleri Dergisi, 25(1), 62-69. doi: 10. 15832/ ankutbd.539000
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Leticia de Freitas de Souza, Juliana Moraes Machado de Oliveira, Vitor Joaquim de Lucena, Otavio Gabriel Lalau Hoda, Iran de Azevedo Duarte, Bruno Figueiró Fregonezi, Josué Maldonado Ferreira

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.