Antimicrobial and modulating activity of essential oils against bacteria isolated from goat dairy products in northeastern Brazil
DOI:
https://doi.org/10.5433/1679-0359.2024v45n6p1807Keywords:
Dairy products, Microbiology, Phytotherapy, Synergism.Abstract
In recent years, novel strategies to combat (multi-) drug-resistant microorganisms have been investigated. Essential oils (EOs) with bactericidal, bacteriostatic, and fungicidal activity have been used to treat infections and in food sanitation. This study aimed to determine the antimicrobial and modulating activity of Cinnamomum cassia (cinnamon) and Eugenia caryophyllus (clove) essential oils against microorganisms isolated from goat milk processing plants in northeastern Brazil, and their synergistic effect when combined with antimicrobial agents. The microdilution technique was used to obtain the minimum inhibitory (MIC) and bactericidal concentrations (MBC) and the antibiotics studied were ampicillin, amoxicillin/clavulanic acid, cephalothin, ceftazidime, chloramphenicol, gentamicin, meropenem, norfloxacin, sulfamethoxazole/trimethoprim, and tetracycline. Klebsiella pneumoniae (MIC50) and Escherichia coli (MIC90) were sensitive to cinnamon EO. Clove EO did not inhibit the growth of either microorganism. In regard to MBC, cinnamon EO had a bactericidal effect against six K. pneumoniae and six E. coli samples. For the antibiotics evaluated, a greater synergistic effect was observed for cinnamon EO associated with gentamicin and meropenem, and antagonistic effect with ampicillin, sulfamethoxazole/trimethoprim, and tetracycline. As such, EOs may be an alternative for the control of pathogenic microorganisms.
Downloads
References
Andrade, N. J. (2008). Hygiene in the food industry: evaluation and control of bacterial adhesion and biofilm formation. Varela.
American Public Health Association (2001). Compendium of methods for the microbiological examination of foods (4nd ed.). APHA.
Barcelos, M. M., Martins, L., Grenfell, R. D. C., Juliano, L., Anderson, K. L., Santos, M. V. dos, & Gonçalves, J. L. (2019). Comparison of standard and on-plate extraction protocols for identification of mastitis-causing bacteria by MALDI-TOF MS. Brazilian Journal of Microbiology, 50, 849-857. doi: 10.1007/s42770-019-00110-5
Biondo, P. B. F., Carbonera, F., Zawadzki, F., Chiavelli, L. U. R., Pilau, E. J., Prado, I. N., & Visentainer, J. V. (2017). Antioxidant capacity and identification of bioactive compounds by GC-MS of essential oils from spices, herbs, and citrus. Current Bioactive Compounds, 13(2), 137-143. doi: 10.2174/ 1573407212666160614080846
Caesar, L. K., Cech, N. B., Kubanek, J., Linington, R., & Luesch, H. (2019). Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Natural Product Reports, 36(6), 869-888. doi: 10.1039/C9NP00011A
Cleeland, R., & Squires, E. (1991). Evaluation of new antimicrobials in vitro and in experimental animal infections. In V. Lorian (Ed.), Antibiotics in laboratory medicine (pp. 739-788). New York.
Clinical and Laboratory Standards Institute (2020). Performance standards for antimicrobial susceptibility testing (30nd ed.). CLSI.
Coelho, A. V. D., Caetano, M., & Coelho, S. C. A. (2019). Gestão em unidades de alimentação e nutrição: da teoria à prática. Appris Ltda.
Condò, C., Anacarso, I., Sabia, C., Iseppi, R., Anfelli, I., Forti, L., de Niederhäusern, S., Bondi, M., & Messi, P. (2020). Antimicrobial activity of spices essential oils and its effectiveness on mature biofilms of human pathogens. Natural Product Research, 34(4), 567-574. doi: 10.1080/14786419.2018.1490904
Cottarel, G., & Wierzbowski, J. (2007). Combination drugs, an emerging option for antibacterial therapy. Trends in Biotechnology, 12, 547-555. doi: 10.1016/j.tibtech.2007.09.004
Cruz, A. G. D., Zacarchenco, P. B., Oliveira, C. A. F. D., & Corassin, C. H. (2019). Microbiologia, higiene e controle de qualidade no processamento de leites e derivados.
Diniz, A. F., Cruz, P. S. C., Mariz, W. S., Santos, V. R. L., Nóbrega, L. M. M. O., Simões, M. M., Farias, J. H. A., Santos, B., & Oliveira, A. A., Fo. (2024). Evaluation of the antibacterial, modulatory, and anti-adherent properties of oregano (Origanum vulgare) essential oil against food pathogenic bacteria. Semina: Ciências Agrárias, 45(1), 7-22. doi: 10.5433/1679-0359.2024v45n1p7
Dong, N., Yang, X., Chan, E. W., Zhang, R., & Chen, S. (2022). Klebsiella species: Taxonomy, hypervirulence, and multidrug resistance. EBioMedicine, 79, 103998. doi: 10.1016/j.ebiom.2022.103998
Guerra, F. Q. S., Mendes, J. M., Oliveira, W. A., Costa, J. G. M., Coutinho, H. D. M., & Lima, E. O. (2012). Chemical composition and antimicrobial activity of Cinnamomum zeylanicum Blume essential oil on multi-drug resistant Acinetobacter spp. strains. Biofar, 8(1), 62-70.
Guimarães, C., Ferreira, T. C., Oliveira, R. C. F. de, Simioni, P. U., & Ugrinovich, L. A. (2017). In vitro antimicrobial activity of aqueous extract and essential oil of rosemary (Rosmarinus officinalis L.) and clove (Caryophyllus aromaticus L.) against strains of Staphylococcus aureus and Escherichia coli. Revista Brasileira de Biociências, 15(2), 83-89.
Hadacek, F., & Greger, H. (2000). Testing of antifungal natural products: methodologies, comparability of results and assay choice. Phytochemical Analysis, 11, 137-147. doi: 10.1002/(SICI)1099-1565 (200005/06)11:3<137::AID-PCA514>3.0.CO;2-I
Hemaiswarya, S., & Doble, M. (2010). Synergistic interaction of phenylpropanoids with antibiotics against bacteria. Journal of Medical Microbiology, 59(12), 1469-1476. doi: 10.1099/jmm.0.022426-0
Hervet, C. J., Alles, A. S., Martin, W. H., Boor, K. J., & Wiedmann, M. (2016). Evaluation of different methods to detect microbial hygiene indicators relevant in the dairy industry. Journal of Dairy Science, 11(9), 7033-7042. doi: 10.3168/jds.2016-11074
Ju, J., Xie, Y., Yu, H., Guo, Y., Cheng, Y., Qian, H., & Yao, W. (2022). Synergistic interactions of plant essential oils with antimicrobial agents: A new antimicrobial therapy. Critical Reviews in Food Science and Nutrition, 62(7), 1740-1751. doi: 10.1080/10408398.2020.1846494
Kafa, A. H. T., Aslan, R., Celik, C., & Hasbek, M. (2022). Antimicrobial synergism and antibiofilm activities of Pelargonium graveolens, Rosemary officinalis, and Mentha piperita essential oils against extreme drug-resistant Acinetobacter baumannii clinical isolates. Zeitschrift für Naturforschung C, 77(3-4), 95-104. doi: 10.1515/znc-2021-0079
Kang, Y. R., Chung, D. R., Ko, J. H., Huh, K., Cho, S. Y., Kang, C., & Peck, K. R. (2023). Comparing the Synergistic and antagonistic interactions of ciprofloxacin and levofloxacin combined with rifampin against drug-resistant Staphylococcus aureus: a time-kill assay. Antibiotics, 12, 711. doi: 10.3390/antibiotics12040711
Liu, Q., Niu, H., Zhang, W., Mu, H., Sun, C., & Duan, J. (2015). Synergy among thymol, eugenol, berberine, cinnamaldehyde and streptomycin against planktonic and biofilm‐associated food‐borne pathogens. Letters in Applied Microbiology, 60(5), 421-430. doi: 10.1111/lam.12401
Liu, S., Yang, L., Zheng, S., Hou, A., Man, W., Zhang, J., Wang, S., Wang, X., Yu, H., & Jiang, H. (2021). A review: the botany, ethnopharmacology, phytochemistry, pharmacology of Cinnamomi cortex. RSC Advances, 11(44), 27461-27497. doi:10.1039/D1RA04965H
Loukili, E. H., Ouahabi, S., Elbouzidi, A., Taibi, M., Yahyaoui, M. I., Asehraou, A., Azougay, A., Saleh, A. A. A., Kamaly, O., Parvez, M. K., El Guerrouj, B., Touzani, R., & Ramdani, M. (2023). Phytochemical composition and pharmacological activities of three essential oils collected from Eastern Morocco (Origanum compactum, Salvia officinalis, and Syzygium aromaticum): a comparative study. Plants, 12(19), 3376. doi: 10.3390/plants12193376
Machado, G. P., Silva, R. C., Guimarães, F. F., Salina, A., & Langoni, H. (2018). Detection of Staphylococcus aureus, Streptococcus agalactiae and Escherichia coli in Brazilian mastitic milk goats by multiplex-PCR. Pesquisa Veterinária Brasileira, 38, 1358-1364. doi: 10.1590/1678-5150-PVB-55141
Man, A., Santacroce, L., Iacob, R., Mare, A., & Man, L. (2019). Antimicrobial activity of six essential oils against a group of human pathogens: a comparative study. Pathogens, 8(1), 15, 1-11 doi: 10.3390/pathogens8010015
Marques, J. M., Serrano, S., Selmi, H., Cotovio, P. G., & Semedo-Lemsaddek, T. (2023). Antimicrobial and antibiofilm potential of Thymus vulgaris and Cymbopogon flexuosus essential oils against pure and mixed cultures of foodborne bacteria. Antibiotics, 12(3), 565. doi: 10.3390/antibiotics12030565
Mohamed, S., Mohamed, M. S. M., Khalil, M. S., Azmy, M., & Mabrouk, M. I. (2018). Combination of essential oil and ciprofloxacin to inhibit/eradicate biofilms in multidrug-resistant Klebsiella pneumoniae. Journal of Applied Microbiology, 125(1), 84-95. doi: 10.1111/jam.13755
Ncube, N. S., Afolayan, A. J., & Okoh, A. I. (2008). Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. African Journal of Biotechnology, 7(12), 1797-1806. doi: 10.5897/AJB07.613
Neagu, R., Popovici, V., Ionescu, L.-E., Ordeanu, V., Biță, A., Popescu, D. M., Ozon, E. A., & Gîrd, C. E. (2024). Phytochemical screening and antibacterial activity of commercially available essential oils combinations with conventional antibiotics against gram-positive and gram-negative bacteria. Antibiotics, 13(6), 478. doi: 10.3390/antibiotics13060478
Palaniappan, K., & Holley, R. A. (2010). Use of natural antimicrobials to increase antibiotic susceptibility of drug-resistant bacteria. International Journal of Food Microbiology, 140(2-3), 164-168. doi: 10.1016/j.ijfoodmicro.2010.04.001
Pedro, P. R. B., Barboza, K. J. W., & Costa, C. P. da. (2024). Análise de controle de parâmetros microbiológicos nos processos de manipulação em entreposto de carnes. Revista JRG de Estudos Acadêmicos, 7(14), e141262. doi: 10.55892/jrg.v7i14.1262
Qian, W., Sun, Z., Wang, T., Yang, M., Liu, M., Zhang, J., & Li, Y. (2020). Antimicrobial activity of eugenol against carbapenem-resistant Klebsiella pneumoniae and its effect on biofilms. Microbial Pathogenesis, 139, 103924. doi: 10.1016/j.micpath.2019.103924
Quendera, A. P., Barreto, A. S., & Semedo-Lemsadek, T. (2018). Antimicrobial activity of essential oils against foodborne multidrug-resistant enterococci and aeromonads in planktonic and biofilm state. Food Science and Technology International, 25(2), 101-108. doi: 10.1177/1082013218799027
Rabêlo, W. F., Gomes, P. R. B., Reis, J. B., Souza, R. D., Fontenel, M. A., & Mouchrek, V. E., Fo. (2024). Antibacterial activity of clove essential oil (Syzygium aromaticum) against strains of Escherichia coli, Pseudomonas aeruginosa, and Salmonella spp. Tchê Química, 21(46), 2-10. doi: 10.52571/PTQ.v21.n46.2024_02_Rabelo_pgs_02_10.pdf
Radünz, M., Trindade, M. L. M., Camargo, T. M., Radünz, A. L., Borges, C. D., Gandra, E. A., & Helbig, E. (2019). Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil. Food Chemistry, 276, 180-186. doi: 10.1016/j.foodchem.2018.09.173
Santos, D. D. A., Jr., Matos, R. A. T., Melo, D. B. D., Garino, F., Jr., Simões, S. V. D., & Miranda, E. G. D., Neto. (2019a). Etiologia e sensibilidade antimicrobiana in vitro de bactérias isoladas de cabras com mastite no Sertão e Cariri paraibano. Ciência Animal Brasileira, 20, e-44848. doi: 10.1590/1089-6891v20e-44848
Santos, M. V., & Fonseca, L. F. L. (2019b). Controle de mastite e qualidade do leite - desafios e soluções.
Silva, A. R. M., Mendes, L. S. L., Souza, E. F. S., Pereira, M. L., Alves, M. D., Alves, E. V. P., Torres, E. L., & Novais, T. M. G. (2023). Evaluation of the antimicrobial activity of Cinnamomum cassia essential oil. Revista Foco, 16(11), 118. doi: 10.54751/revistafoco.v16n11-118
Silva, S. G., Oliveira, M. S. de, Cruz, J. N., Costa, W. A., Silva, S. H. M., Maia, A. A. B., & Aguiar Andrade, E. H. de. (2021). Supercritical CO2 extraction to obtain Lippia thymoides Mart., & Schauer (Verbenaceae) essential oil rich in thymol and evaluation of its antimicrobial activity. The Journal of Supercritical Fluids, 168, 105064. doi: 10.1016/j.supflu.2020.105064
Vasconcelos, N. G., Croda, J., & Simionatto, S. (2018). Antibacterial mechanisms of cinnamon and its constituents: a review. Microbial Pathogenesis, 120, 198-203. doi: 10.1016/j.micpath.2018.04.036
Yang, S. K., Yusoff, K., Mai, C. W., Lim, W. M., Yap, W. S., Lim, S. H. E., & Lai, K. S. (2017). Additivity vs. synergism: investigation of the additive interaction of cinnamon bark oil and meropenem in combinatory therapy. Molecules, 22(11), 1733. doi: 10.3390/molecules22111733
Yap, P. S. X., Krishnan, T., Chan, K. G., & Lim, S. H. E. (2015). Antibacterial mode of action of Cinnamomum verum bark essential oil, alone and in combination with piperacillin, against a multi-drug-resistant Escherichia coli strain. Journal of Microbiology and Biotechnology, 25(8), 1299-1306. doi: 10.4014/jmb.1407.07054
Yap, P. S. X., Lim, S. H. E., Hu, C. P., & Yiap, B. C. (2013). Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug-resistant bacteria. Phytomedicine, 20(8-9), 710-713. doi: 10.1016/j.phymed.2013.02.013
Yasir, M., Nawaz, A., Ghazanfar, S., Okla, M. K., Chaudhary, A., Al, W. H., Ajmal, M. N., AbdElgawad, H., Ahmad, Z., Abbas, F., Wadood, A., Manzoor, Z., Akhtar, N., Din, M., Hameed, Y., & Imran, M. (2022). Anti-bacterial activity of essential oils against multidrug-resistant foodborne pathogens isolated from raw milk. Brazilian Journal of Biology, 84, e259449. doi: 10.1590/1519-6984.259449
Zago, J. A., Ushimaru, P. I., Barbosa, L. N., & Fernandes, A., Jr. (2009). Sinergismo entre óleos essenciais e drogas antimicrobianas sobre linhagens de Staphylococcus aureus e Escherichia coli isoladas de casos clínicos humanos. Revista Brasileira de Farmacognosia, 19, 828-833. doi: 10.1590/S0102-695X2009000600005
Zegarra, J. J. Q., Botteon, R. D. C. C. M., Silva Oliveira, B. C. R. da, Botteon, P. D. T. L., & Souza, M. M. de. (2009). Pesquisa de microrganismos em utensílios, leite e queijos de produção artesanal em unidades de produção familiar no município de Seropédica, Rio de Janeiro. Ciência Animal Brasileira/Brazilian Animal Science, 10(1), 312-321. doi: 10.5216/cab.v10i1.425
Zhang, C., Fan, L., Fan, S., Wang, J., Luo, T., Tang, Y., Chen, Z., & Yu, L. (2019). Cinnamomum cassia Presl: a review of its traditional uses, phytochemistry, pharmacology and toxicology. Molecules, 24(19), 3473. doi: 10.3390/molecules24193473
Zhang, Y., Liu, X., Wang, Y., Jiang, P., & Quek, S. (2016). Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control, 59, 282-289. doi: 10.1016/j.foodcont.2015.05.032
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Iara Nunes de Siqueira, Aline Antas Cordeiro Cavalcanti, Débora Luíse Canuto de Sousa, Giliel Rodrigues Leandro, Abrahão Alves de Oliveira Filho, Marcia Almeida de Melo
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.