Correlation between in vitro sperm kinetic, oxidative stress assessments and field fertility of cryopreserved bull semen

Authors

DOI:

https://doi.org/10.5433/1679-0359.2023v44n5p1841

Keywords:

Bovine sperm, Percoll™ gradient, Oxigen-reactive species. , CASA.

Abstract

This study assessed kinetic parameters and oxidative stress in bull sperm after post-thaw (PT) or after sperm selection by Percoll™ gradient, and thermo resistance test (SS + TRT) to identify useful indicators of field fertility. For the experiment, commercial doses of frozen semen were obtained from six Aberdeen Angus bulls. Three of the bulls were classified as high fertility and three as low fertility according to the IFert™ index provided by the international breeding company CRV Lagoa. Pooled semen samples were distributed between two treatment groups for analysis: post-thaw (PT) or sperm selection (SS) (Percoll™) and thermal resistance test (SS + TRT). The samples were evaluated using sperm kinetics (CASA) (motility %, progressive motility %, VCL µm/s, VSL µm/s, VAP µm/s, LIN %, STR % and WOB%), production of reactive oxygen species (ROS), lipid peroxidation, superoxide dismutase (SOD) enzyme activity and total antioxidant capacity. Data were analyzed using Two-Way ANOVA, considering the fertility index, the treatment used in the samples as effects, and the interaction between these factors. When a significant effect was observed, the values were compared using the Bonferroni test. A Pearson Correlation analysis was performed between the fertility indices and the sperm parameters analyzed in vitro, to evaluate the relationship between sperm quality and the fecundity rate obtained by the bulls. Sperm kinetic parameters, including total motility, progressive motile, and beat cross-frequency, were higher in low fertility compared to high fertility bulls (P < 0.05). However, curvilinear velocity was greater in high fertility bulls followed by SS + TRT. Straight-line velocity, average path velocity, linearity, and beat cross-frequency beat were higher in high fertility bulls after SS + TRT. Reactive oxygen species was correlated with fertility after SS. In addition, there was a decrease in lipid peroxidation was observed only in high fertility bulls. However, lipid peroxidation and high fertility were correlated after PT and SS + TRT. The combination of in vitro sperm kinetic parameters predicted in vivo fertility more accurately than individual kinetic parameters. The lipid peroxidation of sperm is an important indicator of fertility in bulls. High fertility bulls appeared to be more susceptible to lipid peroxidation, which was only reduced in high fertility bulls, suggesting that their sperm can repair the damage induced by oxidative stress.

Author Biographies

Lis Marques, Universidade Federal do Pampa

Master's Student, Graduate Program in Animal Science, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS, Brazil. 

Daniele Missio, Universidade Federal do Pampa

Master's Student, Graduate Program in Animal Science, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS, Brazil.

Karine de Mattos, Universidade Federal do Pampa

Graduate Student in Veterinary Medicine, UNIPAMPA, Uruguaiana, RS, Brazil.

Francielli Weber Cibin, Universidade Federal do Pampa

Profa., UNIPAMPA, Uruguaiana, RS, Brazil.

Fabio Gallas Leivas, Universidade Federal do Pampa

Prof., UNIPAMPA, Uruguaiana, RS, Brazil.

Daniela dos Santos Brum, Universidade Federal do Pampa

Profa., UNIPAMPA, Uruguaiana, RS, Brazil.

References

Aitken, R. J., Wingate, J. K., De Iuliis, G. N., & McLaughlin, E. A. (2007). Analysis of lipid peroxidation in human spermatozoa using BODIPY C11. Molecular Human Reproduction, 13(4), 203-211. doi: 10.1093/ molehr/gal119 DOI: https://doi.org/10.1093/molehr/gal119

Alvarez, J. G., & Storey, B. T. (1989). Role of glutathione peroxidase in protecting mammalian spermatozoa from loss of motility caused by spontaneous lipid peroxidation. Gamete Research, 23(1), 77-90. doi: 10.1002/mrd.1120230108 DOI: https://doi.org/10.1002/mrd.1120230108

Arias, M. E., Andara, K., Briones, E., & Felmer, R. (2017). Bovine sperm separation by Swim-up and density gradients (Percoll and BoviPure): effect on sperm quality, function and gene expression. Reproductive Biology, 17(2), 126-132. doi: 10.1016/j.repbio.2017.03.002 DOI: https://doi.org/10.1016/j.repbio.2017.03.002

Bailey, J. L., Bilodeau, J. F., & Cormier, N. (2000). Semen cryopreservation in domestic animals: a damaging and capacitating phenomenon. Journal of Andrology, 21(1), 1-7. doi: 10.1002/j.1939-4640.2000.tb03268.x DOI: https://doi.org/10.1002/j.1939-4640.2000.tb03268.x

Bansal, A. K., & Bilaspuri, G. S. (2011). Impacts of oxidative stress and antioxidants on semen functions. Veterinary Medicine International, 2011(686137), 1-7. doi: 10.4061/2011/686137 DOI: https://doi.org/10.4061/2011/686137

Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76. doi: 10.1006/abio.1996.0292 DOI: https://doi.org/10.1006/abio.1996.0292

Bilodeau, J. F., Blanchette, S., Cormier, N., & Sirard, M. A. (2002). Reactive oxygen species-mediated loss of bovine sperm motility in egg yolk Tris extender: protection by pyruvate, metal chelators and bovine liver or oviductal fluid catalase. Theriogenology, 57(3), 1105-1122. doi: 10.1016/s0093-691x(01)00702-6 DOI: https://doi.org/10.1016/S0093-691X(01)00702-6

Bilodeau, J. F., Chatterjee, S., Sirard, M. A., & Gagnon, C. (2000). Levels of antioxidant defenses are decreased in bovine spermatozoa after a cycle of freezing and thawing. Molecular Reproduction and Development, 55(3), 282-288. doi: 10.1002/(SICI)1098-2795(200003)55:3<282::AID-MRD6>3.0.CO;2-7 DOI: https://doi.org/10.1002/(SICI)1098-2795(200003)55:3<282::AID-MRD6>3.0.CO;2-7

Broekhuijse, M. L. W. J., Šoštarić, E., Feitsma, H., & Gadella, B. M. (2012). Application of computer-assisted semen analysis to explain variations in pig fertility. Journal of Animal Science, 90(3), 779-789. doi: 10.2527/jas.2011-4311 DOI: https://doi.org/10.2527/jas.2011-4311

Castro, L. S., Assis, P. M., Siqueira, A. F., Hamilton, T. R., Mendes, C. M., Losano, J. D., Nichi, M., Vicintin, J. A., & Assumpção, M. E. (2016). Sperm oxidative stress is detrimental to embryo development: a dose-dependent study model and a new and more sensitive oxidative status evaluation. Oxidative Medicine and Cellular Longevity, 2016(8213071), 1-12. doi: 10.1155/2016/8213071 DOI: https://doi.org/10.1155/2016/8213071

García-Álvarez, O., Maroto-Morales, A., Ramón, M., Del Olmo, E., Montoro, V., Dominguez-Rebolledo, A. E., Bisbal, A., Jiménez-Rabadán, P., Pérez-Guzmán, M. D., & Soler, A. J. (2010). Analysis of selected sperm by density gradient centrifugation might aid in the estimation of in vivo fertility of thawed ram spermatozoa. Theriogenology, 74(6), 979-988. doi: 10.1016/j.theriogenology.2010.04.027 DOI: https://doi.org/10.1016/j.theriogenology.2010.04.027

Gharagozloo, P., & Aitken, R. J. (2011). The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Human Reproduction, 26(7), 1628-1640. doi: 10.1093/humrep/der132 DOI: https://doi.org/10.1093/humrep/der132

Gliozzi, T. M., Turri, F., Manes, S., Cassinelli, C., & Pizzi, F. (2017). The combination of kinetic and flow cytometric semen parameters as a tool to predict fertility in cryopreserved bull semen. Animal, 11(11), 1975-1982. doi: 10.1017/S1751731117000684 DOI: https://doi.org/10.1017/S1751731117000684

Guimarães, A. C. G., Leivas, F. G., Santos, F. W., Schwengber, E. B., Giotto, A. B., Machado, C. I. U., Gonçalves, C. G. M., Folchini, N. P., & Brum, D. S. (2014). Reduction of centrifugation force in discontinuous percoll gradients increases in vitro fertilization rates without reducing bovine sperm recovery. Animal Reproduction Science, 146(3-4), 103-110. doi: 10.1016/j.anireprosci.2014.02.016 DOI: https://doi.org/10.1016/j.anireprosci.2014.02.016

Hallap, T., Haard, M., Jaakma, Ü., Larsson, B., & Rodriguez-Martinez, H. (2004). Does cleansing of frozen-thawed bull semen before assessment provide samples that relate better to potential fertility?Theriogenology, 62(3-4), 702-713. doi: 10.1016/j.theriogenology.2003.11.017 DOI: https://doi.org/10.1016/j.theriogenology.2003.11.017

Hitit, M., Ugur, M. R., Dinh, T. T. N., Sajeev, D., Kaya, A., Topper, E., Tan, W.& Memili, E. (2020). Cellular and functional physiopathology of bull sperm with altered sperm freezability. Frontiers in Veterinary Science, 7(581137), 1-12. doi: 10.3389/fvets.2020.581137 DOI: https://doi.org/10.3389/fvets.2020.581137

Kasimanickam, R., Kasimanickam, V., Thatcher, C. D., Nebel, R. L., & Cassell, B. G. (2007). Relationships among lipid peroxidation, glutathione peroxidase, superoxide dismutase, sperm parameters, and competitive index in dairy bulls. Theriogenology, 67(5), 1004-1012. doi: 10.1016/j.theriogenology.2006.11.013 DOI: https://doi.org/10.1016/j.theriogenology.2006.11.013

Kim, J. G., & Parthasarathy, S. (1998). Oxidation and the spermatozoa. Seminars in Reproductive Endocrinology, 16(4), 235-339. doi: 10.1055/s-2007-1016283 DOI: https://doi.org/10.1055/s-2007-1016283

Leite, R. F., Agostini Losano, J. D. de, Kawai, G. K. V., Rui, B. R., Nagai, K. K., Castiglioni, V. C., Siqueira, A. F. P., D'Avila Assumpção, M. E. O., Baruselli, P. S. & Nichi, M. (2022). Sperm function and oxidative status: effect on fertility in Bos taurus and Bos indicus bulls when semen is used for fixed-time artificial insemination. Animal Reproduction Science, 237(2022), 106922. doi: 10.1016/j.anireprosci.2022.106922 DOI: https://doi.org/10.1016/j.anireprosci.2022.106922

Loetchutinat, C., Kothan, S., Dechsupa, S., Meesungnoen, J., Jay-Gerin, J. P., & Mankhetkorn, S. (2005). Spectrofluorometric determination of intracellular levels of reactive oxygen species in drug-sensitive and drug-resistant cancer cells using the 2′, 7′-dichlorofluorescein diacetate assay. Radiation Physics and Chemistry, 72(2-3), 323-331. doi: 10.1016/j.radphyschem.2004.06.011 DOI: https://doi.org/10.1016/j.radphyschem.2004.06.011

Misra, H. P., & Fridovich, I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry, 247(10), 3170-3175. doi: 10.1016/S0021-9258(19)45228-9 DOI: https://doi.org/10.1016/S0021-9258(19)45228-9

Morrell, J. M., Alsina, M. S., Abraham, M. C., & Sjunnesson, Y. (2018). Practical applications of sperm selection techniques for improving reproductive efficiency. Animal Reproduction, 13(3), 340-345. doi: 10.21451/1984-3143-AR876 DOI: https://doi.org/10.21451/1984-3143-AR876

Mortimer, S. T. (2020). CASA Practical aspects. Journal of Andrology, 21(4), 515-524. doi: 10.1002/j.1939-4640.2000.tb02116.x DOI: https://doi.org/10.1002/j.1939-4640.2000.tb02116.x

Nair, S. J., Brar, A. S., Ahuja, C. S., Sangha, S. P. S., & Chaudhary, K. C. (2006). A comparative study on lipid peroxidation, activities of antioxidant enzymes and viability of cattle and buffalo bull spermatozoa during storage at refrigeration temperature. Animal Reproduction Science, 96(1-2), 21-29. doi: 10.1016/j.anireprosci.2005.11.002 DOI: https://doi.org/10.1016/j.anireprosci.2005.11.002

Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351-358. doi: 10.1016/0003-2697(79)90738-3 DOI: https://doi.org/10.1016/0003-2697(79)90738-3

Oliveira, L. Z., Arruda, R. P., Andrade, A. F. C., Celeghini, E. C. C., Santos, R. M., Beletti, M. E., Peres, R. F. G., Oliveira, C. S., & Lima, V. F. M. H. de. (2012). Assessment of field fertility and several in vitro sperm characteristics following the use of different Angus sires in a timed-AI program with suckled Nelore cows. Livestock Science, 146(1), 38-46. doi: 10.1016/j.livsci.2012.02.018 DOI: https://doi.org/10.1016/j.livsci.2012.02.018

Oliveira, L. Z., Arruda, R. P. de, Andrade, A. F. C. de, Celeghini, E. C. C., Reeb, P. D., Martins, J. P. N., Santos, R. M., Beletti, M. E., Peres, R. F., Monteiro, F. M., & Lima, V. F. M. H. de. (2013). Assessment of in vitro sperm characteristics and their importance in the prediction of conception rate in a bovine timed-AI program. Animal Reproduction Science, 137(3-4), 145-155. doi: 10.1016/j.anireprosci.2013.01.010 DOI: https://doi.org/10.1016/j.anireprosci.2013.01.010

Parrish, J. J., Susko-Parrish, J. L., Leibfried-Rutledge, M. L., Critser, E. S., Eyestone, W. H., & First, N. L. (1986). Bovine in vitro fertilization with frozen-thawed semen. Theriogenology, 25(4), 591-600. doi: 10.1016/0093-691x(86)90143-3c DOI: https://doi.org/10.1016/0093-691X(86)90143-3

Partyka, A., Łukaszewicz, E., & Niżański, W. (2012). Effect of cryopreservation on sperm parameters, lipid peroxidation and antioxidant enzymes activity in fowl semen. Theriogenology, 77(8), 1497-1504. doi: 10. 1016/j.theriogenology.2011.11.006 DOI: https://doi.org/10.1016/j.theriogenology.2011.11.006

Pereira, F. R., Almeida, A. B. M. de, Hidalgo, M. M. T., Potiens, J. R., Souza, A. K., Lopes, F. G., Barreiros, T. R. R., Morotti, F., & Martins, M. I. M. (2021). Relationship between viability of thawed semen and pregnancy rate of Nelore cows subjected to fixed-time artificial insemination. Research, Society and Development, 10(2), 1-11. doi: 10.33448/rsd-v10i2.12184 DOI: https://doi.org/10.33448/rsd-v10i2.12184

Prakash, P., Leykin, L., Chen, Z., Toth, T., Sayegh, R., Schiff, I., & Isaacson, K. (1998). Preparation by differential gradient centrifugation is better than swim-up in selecting sperm with normal morphology (strict criteria). Fertility and Sterility, 69(4), 722-726. doi: 10.1016/s0015-0282(98)00002-8 DOI: https://doi.org/10.1016/S0015-0282(98)00002-8

Sanchez, R., Isachenko, V., Petrunkina, A. M., Risopatron, J., Schulz, M., & Isachenko, E. (2012). Live birth after intrauterine insemination with spermatozoa from an oligoasthenozoospermic patient vitrified without permeable cryoprotectants. Journal of Andrology, 33(4), 559-562. doi: 10.2164/jandrol.111.014274 DOI: https://doi.org/10.2164/jandrol.111.014274

Sellem, E., Broekhuijse, M. L. W. J., Chevrier, L., Camugli, S., Schmitt, E., Schibler, L., & Koenen, E. P. C. (2015). Use of combinations of in vitro quality assessments to predict fertility of bovine semen. Theriogenology, 84(9), 1447-1454. doi: 10.1016/j.theriogenology.2015.07.035 DOI: https://doi.org/10.1016/j.theriogenology.2015.07.035

Silva, C. S., Costa-E-Silva, E. V. da, Dode, M. A. N., Cunha, A. T. M., Garcia, W. R., Sampaio, B. F. B., Borges Silva, J. C., Vaz, F. E. M., Kerns, K., Sutovsky, P. & Nogueira, E. (2023). Semen quality of Nellore and Angus bulls classified by fertility indices and relations with field fertility in fixed-time artificial insemination. Theriogenology, 212(2023), 148-156. doi: 10.1016/j.theriogenology.2023.09.001 DOI: https://doi.org/10.1016/j.theriogenology.2023.09.001

Simonik, O., Sichtar, J., Krejcarkova, A., Rajmon, R., Stadnik, L., Beran, J.,Dolezalova, M. & Biniova, Z. (2015). Computer assisted sperm analysis–the relationship to bull field fertility, possible errors and their impact on outputs: a review. Indian Journal of Animal Sciences, 85(1), 3-11. DOI: https://doi.org/10.56093/ijans.v85i1.46113

Singh, R. K., Kumaresan, A., Chhillar, S., Rajak, S. K., Tripathi, U. K., Nayak, S., Datta, T. K., Mohanty, T. K., & Malhotra, R. (2016). Identification of suitable combinations of in vitro sperm-function test for the prediction of fertility in buffalo bull. Theriogenology, 86(9), 2263-2271. doi: 10.1016/j.theriogenology.2016.07.022 DOI: https://doi.org/10.1016/j.theriogenology.2016.07.022

Utt, M. D. (2016). Prediction of bull fertility. Animal Reproduction Science, 169(2016), 37-44. doi: 10.1016/j.anireprosci.2015.12.011 DOI: https://doi.org/10.1016/j.anireprosci.2015.12.011

Verstegen, J., Iguer-Ouada, M., & Onclin, K. (2002). Computer assisted semen analyzers in andrology research and veterinary practice. Theriogenology, 57(1), 149-179. doi: 10.1016/s0093-691x(01)00664-1 DOI: https://doi.org/10.1016/S0093-691X(01)00664-1

Vianna, F. P., Papa, F. O., Zahn, F. S., Melo, C. M., & Dell’Aqua, J. A., Jr. (2008). Thermoresistance sperm tests are not predictive of potential fertility for cryopreserved bull semen. Animal Reproduction Science, 113(1-4), 279-282. doi: 10.1016/j.anireprosci.2008.06.009 DOI: https://doi.org/10.1016/j.anireprosci.2008.06.009

Vigolo, V., Giaretta, E., Da Dalt, L., Damiani, J., Gabai, G., Bertuzzo, F., & Falomo, M. E. (2022). Relationships between biomarkers of oxidative stress in seminal plasma and sperm motility in bulls before and after cryopreservation. Animals, 12(19), 2534. doi: 10.3390/ani12192534 DOI: https://doi.org/10.3390/ani12192534

Walczak-Jedrzejowska, R., Wolski, J. K., & Slowikowska-Hilczer, J. (2013). The role of oxidative stress and antioxidants in male fertility. Central European Journal of Urology, 66(1), 60-67. doi: 10.5173/ceju.2013.01.art19 DOI: https://doi.org/10.5173/ceju.2013.01.art19

Zakošek Pipan, M., Mrkun, J., Kosec, M., Nemec Svete, A., & Zrimšek, P. (2014). Superoxide dismutase: a predicting factor for boar semen characteristics for short-term preservation. BioMed Research International, 2014(105280), 1-7. doi: 10.1155/2014/105280 DOI: https://doi.org/10.1155/2014/105280

Downloads

Published

2023-12-13

How to Cite

Marques, L., Missio, D., Mattos, K. de, Cibin, F. W., Leivas, F. G., & Brum, D. dos S. (2023). Correlation between in vitro sperm kinetic, oxidative stress assessments and field fertility of cryopreserved bull semen. Semina: Ciências Agrárias, 44(5), 1841–1858. https://doi.org/10.5433/1679-0359.2023v44n5p1841

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.