Biochemical, microbiological and technological characteristics of type II sourdoughs produced with lactic acid bacteria single-strains

Authors

DOI:

https://doi.org/10.5433/1679-0359.2022v43n2p693

Keywords:

HS-SPME, Volatile compounds, Starter culture, Lactobacillus reuteri.

Abstract

The interplay between biochemical characteristics and the generation of volatile compounds in 11 type II sourdough fermented by single strains of lactic acid bacteria (LAB) was studied. Samples were collected at 0, 6, 9, 12, 15, 18 and 24h for analyses of microbial growth, pH, titratable acidity and CO2 production. During the first 12h, the LABs entered the stationary phase, and the formation of organic and carboxyl acids, alcohols, and esters were observed. Although acidity is an important characteristic of sourdough, in this work increasing the acetic acid content decreased yeast growth and the CO2 retention capacity of the doughs. The main carbohydrate consumed by autochthonous yeast was influenced by the LAB added (homo-or heterofermentative), as observed by correlation analysis. Maltose and glucose showed a strong and negative correlation with the yeast cell density in the dough fermented by homo and heterofermentative LAB, respectively. Moreover, LAB had an important effect on the aromatic profile, being the alcohols, aldehydes, alkanes, organics acids and esters mainly groups characterized. Altogether, 100 different volatile compounds were identified; however, each dough had a different volatile profile. This study shows, for the first time, the influence of a single strain of LAB on the characteristics of type II sourdough.

Downloads

Download data is not yet available.

Author Biographies

Francieli Begnini Siepmann, Universidade Federal do Paraná

Ph.D Student of the Post Graduate Program in Food Engineering at Universidade Federal do Paraná, UFPR, Curitiba, PR, Brazil.

Beatriz Sousa de Almeida, Universidade Federal do Paraná

Graduate Student of the Chemical Engineering Program at UFPR, Curitiba, PR, Brazil.

Tatiane Aparecida Gomes, Universidade Federal do Paraná

Ph.D Student of the Post Graduate Program in Food Engineering at UFPR, Curitiba, PR, Brazil.

Nina Waszczynskyj, Universidade Federal do Paraná

Profa Ph.D of the Post Graduate Program in Food Engineering, Technology Sector, Chemical Engineering Department at UFPR, Curitiba, PR, Brazil.

Michele Rigon Spier, Universidade Federal do Paraná

Profa Ph.D of the Post Graduate Program in Food Engineering, Technology Sector, Chemical Engineering Department at UFPR, Curitiba, PR, Brazil.

References

Alfonzo, A., Miceli, C., Nasca, A., Franciosi, E., Ventimiglia, G., Di Gerlando, R., Tuohy, K., Francesca,N., Moschetti, G., Settanni, L. (2017). Monitoring of wheat lactic acid bacteria from the field until the first step of dough fermentation. Food Microbiology, 62(1), 256-269. doi: 10.1016/j.fm.2016.10.014

Belitz, H. D., Grosch, W., & Schieberle, P. (2008). Food chemistry (vol. 6). Heidelberg: Springers.

Cappelle, L. Guylaine, M. Gänzle, & M. (2013). Gobbetti. History and Social Aspects of Sourdough In M. Gobbetti, & M. Gänzle (Eds.), Handbook on sourdough biotechnology (vol. 1, pp.1-10). Boston: Springer. doi: 10.1007/978-1-4614-5425-0

Clarke, I. C., Schober, J. T., Dockery, P., O’Sullivan, K., & Arendt, K. E. (2004). Wheat sourdough fermentation: effects of time and acidification on fundamental rheological properties. Cereal Chemistry, 81(3), 409-417. doi: 10.1094/CCHEM.2004.81.3.409

Codinã, G. G., Mironeasa, S., Voic, D. V., & Mironeasa, C. (2013). Multivariate analysis of wheat flour dough sugars, gas production, and dough development at different fermentation times. Czech Journal of Food Science, 31(1), 222-229. doi: 10.17221/216/2012-CJFS

Corsetti, A. (2013). Technology of sourdough fermentation and sourdough appplications. In M. Gobbetti, & M. Gänzle (Eds.), Handbook on sourdough biotechnology (vol. 1, pp.85-103). Boston: Springer. doi: 10. 1007/978-1-4614-5425-0

Corsetti, A., Gobbetti, M., Balestrieri, F., Paoletti, F., Russi, L., & Rossi, J. (1998). Sourdough lactic acid bacteria effects on bread firmness and staling. Journal of Food Science, 68(2), 347-351. doi: 10.1111/j. 1365-2621.1998.tb15739.x

Corsetti, A., Lavermicocca, P., Morea, M., Baruzzi, F., Tostic, N., & Gobbetti, M. (2001). Phenotypic and molecular identification and clustering of lactic acid bacteria and yeasts from wheat (species Triticum durum and Triticum aestivum) sourdoughs of Southern Italy. International Journal of Food Microbiology, 64(1-2), 95-104. doi: 10.1016/s0168-1605(00)00447-5

De Vuyst, L., & Neysens, P. (2005). The sourdough microflora: biodiversity and metabolic interactions. Trends in Food Science & Technology, 16(1-3), 43-56. doi: 10.1016/j.tifs.2004.02.012

De Vuyst, L., Vrancken, G., Ravyts, F., Rimaux, T., & Weckx, S. (2009). Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiology, 26(7), 666-675. doi: 10.1016/j.fm.2009.07.012.

Decock, P., & Cappelle, S. (2005). Bread technology and sourdough technology. Trends in Food Science & Technology, 16(1-3), 113-120. doi: 10.1016/j.tifs.2004.04.012

Demirbas, F., Ispirli, H., Kurnaz, A. A., Yilmaz, M. T., & Dertli, E. (2017). Antimicrobial and functional properties of lactic acid bacteria isolated from sourdoughs. LWT - Food Science and Technology, 79(1), 361-366. doi: 10.1016/j.lwt.2017.01.067

Esteve, C. C., De Barber, C. B., & Martínez Anaya, M. A., Esteve, C. C., De Barber, C. B., & Martínez Anaya, M. A. (1994). Microbial sour doughs influence acidification properties and breadmaking potential of wheat dough. Journal of Food Science, 59(3) 629-633. doi: 10.1111/j.1365-2621.1994.tb05579.x

Fujisawa, T., Benno, Y., Yaeshima, T., & Mitsuoka, T. (1992). Taxonomic study of the Lactobacillus acidophilus group, with recognition of Lactobacillus gallinarum sp. nov. and Lactobacillus johnsonii sp. nov. and synonymy of Lactobacillus acidophilus group A3 (Johnson et al. 1980) with the type strain of Lactobacillus amylovorus (Nakamura 1981). International Journal Systematic Bacteriology, 42(3), 487-491. doi: 10.1099/00207713-42-3-487

Fuwa, H. A. (1954). A new method for microdetermonation of amylase activity by the use of amylase as the substrate. The Journal of Biochemistry, 41(5), 583-603. doi: 10.1093/oxfordjournals.jbchem.a126476

Gaglio, R., Barbera, M., Tesoriere, L., Osimani, A., Busetta, G., Matraxia, M., Attanzio, A., Restivo, I., Aquilanti, L., Settanni, L. (2021). Sourdough ciabatta bread enriched with powdered insects: physicochemical, microbiological, and simulated intestinal digesta functional properties. Innovative Food Science and Emerging Technologies, 72(1), 102755. doi: 10.1016/j.ifset.2021.102755

Ganzle, M. G., Ehmann, M., & Hammes, P. W. (1998). Modeling of growth of Lactobacillus sanfranciscensis and Candida milleri in response to process parameters of sourdough fermentation. Applied and Environmental Microbiology, 64(7), 2616-2623. doi:10.1128/AEM.64.7.2616-2623.1998

Ganzle, M. G., Loponen, J., & Gobbetti, M. (2008). Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends in Food Science & Technology, 19(10), 513-521. doi: 10. 1016/j.tifs.2008.04.002

Guerzoni, M. E., Serrazanetti, D. I., Vernocchi, P., & Gianotti, A. (2013). Physiology and biochemistry of sourdough yeasts. In M. Gobbetti, & M. Gänzle (Eds.), Handbook on sourdough biotechnology (pp. 155-181). Boston: Springer.

Guinee, T. P., Pudia, P. D., & Farkye, N. Y. (1993). Fresh acid-curd cheese varieties. In P. F. Fox (Ed.), Cheese Chemistry, Physics and Microbiology (vol. 2, pp. 363-419). London: Chapman & Hall.

Hammes, W. P., & Ganzle, M. G. (1998). Sourdough bread and related products. In B. J. B. Wood (Ed.), Microbiology of fermented foods (vol. 1, pp. 199-216). Boston: Springer.

Hammes, W. P., & Vogel, R. F. (1995). The genus Lactobacillus. In B. J. B. Wood, & W. H. Holzapfel (Eds.), The genera of lactic acid bacteria (pp. 19-54). Boston: Springer.

Huys, G., Daniel, H.-M., & De Vuyst, L. (2013). Taxonomy and biodiversity of sourdough yeasts and lactic acid bacteria. In M. Gobbetti, & M. Gänzle (Eds.), Handbook on sourdough biotechnology. (pp. 105-154). Boston: Springer.

Lazo-Vélez, M. A., Garzon, R., Guardado-Félix, D., Serna-Saldivar, S. O., & Rosell, C. M. (2021). Selenized chickpea sourdoughs for the enrichment of breads. LWT - Food Science and Technology, 150(1), 112082-112030. doi: 10.1016/j.lwt.2021.112082

Manini, F., Casiraghi, M. C., Poutanen, K., Brasca, M., Erba, D., & Plumed-Ferrer, C. (2016). Characterization of lactic acid bacteria isolated from wheat bran sourdough. LWT - Food Science and Technology, 66(1), 275-283. doi: 10.1016/j.lwt.2015.10.045

Narendranath, N.V., Thomas, K.C., & Ingledew, W.M. (2001) Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. Journal of Industrial Microbiology & Biotechnology, 26(3), 171-177. doi: 10.1038/sj/jim/7000090

Nionelli, L., Curri, N., Curiel, J. A., Di Cagno, R., Pontonio, E., Cavoski, I., Gobbetti, M., Rizzello, C. G. (2014). Exploitation of Albanian wheat cultivars: characterization of the flours and lactic acid bacteria microbiota, and selection of starters for sourdough fermentation. Food Microbiology, 44(1), 96-107. doi: 10.1016/j.fm.2014.05.011

Poutanen, K., Flander, L., & Katina, K. (2009). Sourdough and cereal fermentation in a nutritional perspective. Food Microbiology, 26(7), 693-699. doi: 10.1016/j.fm.2009.07.011

Ravyts, F., & De Vuyst, L. (2011). Prevalence and impact of single strain starter cultures of lactic acid bacteria on metabolite formation in sourdough. Food Microbiology, 28(6), 1129-1139. doi: 10.1016/j.fm.2011. 03.004

Reale, A., Di Renzo, T., Preziuso, M., Panfili, G., Cipriano, L., & Messia, M. C. (2019). Stabilization of sourdough starter by spray drying technique: New breadmaking perspective. LWT - Food Science and Technology, 99(1), 468-475. doi: 10.1016/j.lwt.2018.10.016

Ripari, V., Gänzle, M. G., & Berardi, E. (2016). Evolution of sourdough microbiota in spontaneous sourdoughs started with different plant materials. International Journal of Food Microbiology, 232, 35-42. doi: 10.10 16/j.ijfoodmicro.2016.05.025

Sajdakowska, M., Gebski, J., Zakowska-Biemans, S., & Jezewska-Zychowicz, M. (2019). Willingness to eat bread with health benefits: habits, taste and health in bread choice. Public Health, 167(1), 78-87. doi: 10. 1016/j.puhe.2018.10.018

Siepmann, F. B., Almeida, B. S. de, Ripari, V., Silva, B. J. G. da, Peralta-Zamora, P. G., Waszczynskyj, N., & Spier, M. R. (2019). Brazilian sourdough: microbiological, structural, and technological evolution. European Food Research and Technology, 245(2), 1-12. doi: 10.1007/s00217-019-03254-8

Siepmann, F. B., Ripari, V., Waszczynskyj, N., & Spier, M. R. (2018). Overview of sourdough technology: from production to marketing. Food and Bioprocess Technology, 11(2), 242-270. doi: 10.1007/s11947-017-1968-2

Struyf, N., Verspreet, J., & Courtin, M. C. (2016). The effect of amylolytic activity and substrate availability on sugarrelease in non yeasted dough. Journal of Cereal Science, 69(1), 111-118. doi: 10.1016/j.jcs. 2016. 02.016

Swiegers, J., Bartowscky, E., Henscke, P., & Pretorius, I. (2005). Yeast and bacterial modulation of wine aroma and flavour. Australian Journal Grape Wine and Research, 11(2), 139-173. doi: 10.1111/j.1755-0238.2005.tb00285.x

Vernon-Carter, E. J., Garcia-Diaz, S., Reyes, I., Carrillo-Navas, H., & Alvarez-Ramirez, J. (2017). Rheological and thermal properties of dough and textural and microstructural characteristics of bread with pulque as leavening agent. International Journal of Gastronomy and Food Science, 9(1), 39-48. doi: 10.1016/j.ijgfs. 2017.03.001

Wang, Y. H., Yang, Y. Y., Li, H. Q., Zhang, Q. D., Xu, F., & Li, Z. J. (2021). Characterization of aroma-active compounds in steamed breads fermented with Chinese traditional sourdough. LWT- Food Science and Technology, 152(1), 112347. doi: 10.1016/j.lwt.2021.112347

Yan, B., Sadiq, F. A., Cai, Y., Fan, D., Chen, W., Zhang, H., & Zhao, J. (2019). Microbial diversity in traditional type I sourdough and jiaozi and its influence on volatiles in Chinese steamed bread. LWT -Food Science and Technology, 101(1), 764-773. doi: 10.1016/j.lwt.2018.12.004

Downloads

Published

2022-02-25

How to Cite

Siepmann, F. B., Almeida, B. S. de, Gomes, T. A., Waszczynskyj, N., & Spier, M. R. (2022). Biochemical, microbiological and technological characteristics of type II sourdoughs produced with lactic acid bacteria single-strains. Semina: Ciências Agrárias, 43(2), 693–712. https://doi.org/10.5433/1679-0359.2022v43n2p693

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.