Root growth and antioxidant enzyme responses to aluminium stress in sugarcane
DOI:
https://doi.org/10.5433/1679-0359.2020v41n6Supl2p3449Keywords:
Toxic aluminium, ROS, Hydroponic system, Saccharum spp., Screening method.Abstract
Aluminium (Al) toxicity in acid soils is a major abiotic stress that can limit plant production worldwide. Al toxicity directly inhibits root development and exacerbates oxidative stress in the plant. Sugarcane is mostly cultivated in tropical regions and is often exposed to phytotoxic concentrations of soil Al. In this study, our objectives were to evaluate nine sugarcane cultivars on their tolerance to Al in a hydroponic system, investigating the effects of 143µM {Al3+} on root growth and on activity of the antioxidant enzymes ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD). The screening method proposed was suitable for a rapid, reliable and reproducible procedure of the sugarcane cultivars. Exposure to Al for three days altered root growth and activity of enzymes of the nine sugarcane cultivars. However, the magnitude of the alterations varied significantly among cultivars. The cultivar RB928064 was classified as Al-tolerant and the cultivar RB835486 as Al-sensitive. Increases in enzyme activity after Al exposure varied from 4 to 46%, with average increases of 19% in APX, 20% in CAT, and 8% in SOD. The variations induced by Al in enzyme activity, however, did not correlate significantly with those variations induced by Al in the root growth.Downloads
References
Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of proteinutilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248-254. doi: 10. 1016/0003-2697(76)90527-3
Caniato, F. F., Guimarães, C. T., Schaffert, R. E., Alves, V. M. C., Kochian, L. V., Borém, A.,… Magalhães, J. V. (2007). Genetic diversity for aluminum tolerance in sorghum. Theoretical and Applied Genetics, 114(1), 863-876. doi: 10.1007/s00122-006-0485-x
Cia, M. C., Guimarães, A. C. R., Medici, L. O., Chabregas, S. M., & Azevedo, R. A. (2012). Antioxidant responses to water deficit by drought-tolerant and -sensitive sugarcane varieties. Annals of Applied Biology, 161(3), 313-324. doi: 10.1111/j.1744-7348.2012.00575.x
Exley, C. (2009). Darwin, natural selection and the biological essentiality of aluminium and silicon. Trends in Biochemical Science, 34(12), 589-593. doi: 10.1016/j.tibs.2009.07.006.
Famoso, A. N., Clark, R. T., Shaff, J. E., Craft, E., McCouch, S. R., & Kochian, L. V. (2010). Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms. Plant Physiology, 153(3), 1678-1691. doi: 10.1104/pp.110.156794
Ferreira, R. P., Moreira, A., & Rassini, J. B. (2006). Toxidez de alumínio em culturas anuais. São Carlos: EMBRAPA Pecuária Sudeste.
Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59(2), 309-314. doi: 10.1104/pp.59.2.309
Hepperle, D. (2016). WinIAP© - Calculation of ion activities and calcite saturation index. Win32-Version, 1994. Retrieved from http://science.do-mix.de
Hetherington, S. J., Asher, C. J., & Blamey, F. P. C. (1986). Tolerance of sugarcane to Al in soil and solution culture. Proceedings of Australian Society of Sugar Cane Technologists Congress, 8(1), 63-68. Retrieved from www.assct.com.au/media/pdfs/1986_pa_ag10.pdf
Hetherington, S. J., Asher, C. J., & Blamey, F. P. C. (1988). Comparative tolerance of sugarcane, navybean, soybean and maize to aluminium toxicity. Australian Journal of Agricultural Research, 39(2), 171-176. doi: 10.1071/ar9880171
Kochian, L. V., Piñeros, M. A., Liu, J., & Magalhães, J. V. (2015). Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annual Review of Plant Biology, 66(1), 571-598. doi: 10. 1146/annurev-arplant-043014-114822
Kumari, M., Taylor, G. J., & Deyholos, M. K. (2008). Transcriptomic responses to aluminium stress in root of Arabidopsis thaliana. Molecular Genetics and Genomics, 279(4), 339-357. doi: 10.1007/s00438-007-0316-z
Maia, C., Almeida, C. F., Costa, P. M. A., Melo, J. A. G. de, Jr., Silveira, G. da, Peternelli, L. A.,... Bhering, L. L. (2018). Phenotypic plasticity of sugarcane genotypes under aluminum stress. Journal of Experimental Agriculture International, 22(3), 1-11. doi: 10.9734/JEAI/2018/40984
Moldes, C. A., Medici, L. O., Abrahão, O. S., Tsai, S. M., & Azevedo, R. A. (2008). Biochemical responses of glyphosate resistant and susceptible soybean plants exposed to glyphosate. Acta Physiologiae Plantarum, 30(4), 469-479. doi: 10.1007/s11738-008-0144-8
Noctor, G., Reichheld, J. P., & Foyer, C. H. (2018). ROS-related redox regulation and signalling in plants. Seminars in Cell & Developmental Biology, 80(1), 3-12. doi: 10.1016/j.semcdb.2017.07.013
R Development Core Team (2011). R: A Language and environment for statistical computing. Vienna, Austria: The R Foundation for Statistical Computing. Retrieved from http://www.R-project.org
Rahim, F., Almeida, V. C., Viana, J. M. S., Ribeiro, C., Risso, L. A., & Ribeiro, M. P. (2019). Identification of contrasting tropical popcorn inbreds for studying aluminum toxicity tolerance inheritance. Euphytica, 215(3), 47-54. doi: 10.1007/s10681-019-2372-y
Singh, S., Tripathi, D. K., Singh, S., Sharma, S., Dubey, N. K., Chauhan, D. K., & Vaculík, M. (2017). Toxicity of aluminium on various levels of plant cells and organism: A review. Environmental and Experimental Botany, 137(2), 177-193. doi: 10.1016/j.envexpbot.2017.01.005
Smith, D. M., Inman-Bamber, N. G., & Thorburn, P. J. (2005). Growth and function of the sugarcane root system. Field Crops Research, 92(3), 169-183. doi: 10.1016/j.fcr.2005.01.017
Watt, D. (2003). Aluminium-responsive genes in sugarcane: identification and analysis of expression under oxidative stress. Journal of Experimental Botany, 54(385), 1163-1174. doi: 10.1093/jxb/erg128
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Semina: Ciências Agrárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.