Maize hybrids contrasting for drought tolerance differ during the vegetative stage
DOI:
https://doi.org/10.5433/1679-0359.2020v41n4p1093Keywords:
Água, Análise multivariada, Zea mays L.Abstract
Maize hybrids contrasting for drought tolerance differ during the vegetative stage. Drought is the main constraint on maize production in developing nations. Differences during development between genetic materials of maize grown under water restriction suggest that the plant can be improved with a view to its adaptation. In maize, sensitivity to water stress can occur at any stage of its phenological development. However, few studies report its effects on the vegetative phase of the cycle. On this basis, this study was conducted to examine how shoot and root-system indices are expressed in cultivation under water deficit as well as determine which indicators best explain the difference between hybrids in the evaluated water regimes. Commercial seeds of hybrids BR1055 and DKB-390 (drought-tolerant) and BRS1010 (drought-sensitive) were germinated in PVC tubes (1.0 m × 0.1 m) in a randomized complete block design, in a 3 × 2 factorial arrangement. The experiment was developed in a greenhouse where two water regimes were tested: no water stress and with water stress from the VE stage. The soil consisted of quartz sand mixed with a commercial fertilizer. Stem and root traits were evaluated up to the V5 growth stage. Relative chlorophyll content, leaf temperature, stem length, phenology, shoot dry biomass, root length, root dry biomass, root surface area, root volume and D95 were responsive to water deficit. The parameters that allowed the distinction between the hybrids in water the regimes were relative chlorophyll content, leaf temperature, phenology and average root diameter.Downloads
References
Adebo, F., & Olaoye, G. (2015). Growth indices and grain yield attributes in six maize cultivars representing two era of maize breeding in Nigeria. Journal of Agricultural Research and Development, 14(2), 11-25. doi: 10.5539/jas.v2n3p218
Ali, F., Ahsan, M., Ali, Q., & Kanwal, N. (2017). Phenotypic stability of Zea mays grain yield and its attributing traits under drought stress. Frontiers in Plant Science, (8), 1397. doi: 10.3389/fpls.2017.01397
Ali, M. L., Luetchens, J., Singh, A., Shaver, T. M., Kruger, G. R., & Lorenz, A. J. (2016). Greenhouse screening of maize genotypes for deep root mass and related root traits and their association with grain yield under water-deficit conditions in the field. Euphytica, 207(1), 79-94. doi: 10.1007/s10681-015-1533-x
Araus, J. L., Serret, M. D., & Edmeades, G. (2012). Phenotyping maize for adaptation to drought. Frontiers in Physiology, (3), 1-20. doi: 10.3389/fphys.2012.00305
Beiragi, M. A., Ebrahimi, M., Mostafavi, K., Golbashy, M., & Khorasani, S. K. (2011). A study of morphological basis of corn (Zea mays L.) yield under drought stress condition using correlation and path coefficient analysis. Journal of Cereals and Oilseeds, 2(2), 32-37.
Bengough, A. G., McKenzie, B., Hallett, P., & Valentine, T. (2011). Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. Journal of Experimental Botany, 62(1), 59-68. doi: 10.1093/jxb/erq350
Bergamaschi, H., & Matzenauer, R. (2014). O milho e o clima. Porto Alegre: Emater/RS-Ascar.
Bibi, A., Sadaqat, H., Tahir, M., & Akram, H. (2012). Screening of sorghum (Sorghum bicolor var Moench) for drought tolerance at seedling stage in polyethylene glycol. The Journal of Animal & Plant Sciences, 22(3), 671-678.
Bonfim-Silva, E. M., Silva, T. J. A. da, Cabral, C. E. A., Kroth, B. E., & Rezende, D. (2011). Desenvolvimento inicial de gramíneas submetidas ao estresse hídrico. Revista Caatinga, 24(2), 180-186.
Burton, A. L., Brown, K. M., & Lynch, J. P. (2013). Phenotypic diversity of root anatomical and architectural traits in Zea species. Crop Science, 53(3), 1042-1055. doi: 10.2135/cropsci2012.07.0440
Cantão, F. R. D. O., Durães, F. O. M., Oliveira, A. C. de, Soares, Â. M., & Magalhães, P. C. (2008). Morphological attributes of root system of maize genotypes contrasting in drought tolerance due to phosphorus stress. Revista Brasileira de Milho e Sorgo, 7(2), 113-127.
Clemente, D. I. (2017). Estresse hídrico sobre caracteres morfofisiológicos e agronômicos em populações de milho. Dissertação de mestrado, Universidade Federal de Goiás, Jataí, GO, Brasil.
Cole, E. S., & Mahall, B. E. (2006). A test for hydrotropic behavior by roots of two coastal dune shrubs. New Phytologist, 172(2), 358-368. doi: 10.1111/j.1469-8137.2006.01822.x
Cooper, M., Gho, C., Leafgren, R., Tang, T., & Messina, C. (2014). Breeding drought-tolerant maize hybrids for the US corn-belt: Discovery to product. Journal of Experimental Botany, 65(21), 6191-6204. doi: 10.1093/jxb/eru064
Costa, C., Dwyer, L. M., Zhou, X., Dutilleul, P., Hamel, C., Reid, L. M., & Smith, D. L. (2002). Root morphology of contrasting maize genotypes. Agronomy Journal, 94(1), 96-101. doi: 10.2134/agronj2002.9600
Fan, J., McConkey, B., Wang, H., & Janzen, H. (2016). Root distribution by depth for temperate agricultural crops. Field Crops Research, (189), 68-74. doi: 10.1016/j.fcr.2016.02.013
Fonseca, T. M., & Magalhães, P. C. (2017). Interferência do déficit hídrico na produtividade e acúmulo de sólidos solúveis em genótipos de milho contrastantes a seca. Anais do Seminário de Iniciação Científica PIBIC/BIC JÚNIOR, Sete Lagoas, MG: EMBRAPA Milho e Sorgo.
Friendly, M., & Fox, J. (2017). Candisc: visualizing generalized canonical discriminant and canonical correlation analysis (Version R package version 0.6-5). Retrieved from http://CRAN.R-project.org/package=candisc
Iwuala, E., Odjegba, V., Umebese, C., Sharma, V., & Alam, A. (2019). Physiological and gene expression studies of selected Zea mays L. and Pennisetum glaucum (L.) R. Br. Genotypes to simulated drought stress condition. Vegetos, 32(3), 397-406. doi: 10.1007/s42535-019-00030-7
Kamoshita, A., Rodriguez, R., Yamauchi, A., & Wade, L. (2004). Genotypic variation in response of rainfed lowland rice to prolonged drought and rewatering. Plant Production Science, 7(4), 406-420. doi: 10.1626/pps.7.406
Kappes, C., Carvalho, M. A. C., Yamashita, O. M., & Silva, J. A. da, Neto. (2009). Influência do nitrogênio no desempenho produtivo do milho cultivado na segunda safra em sucessão à soja. Pesquisa Agropecuária Tropical, 39(3), 251-259. doi: Recuperado de https://www.redalyc.org/articulo.oa?id= 2530/253020158009
Lavinsky, A. O., Magalhães, P. C., Ávila, R. G., Diniz, M. M., & Souza, T. C. de. (2015). Partitioning between primary and secondary metabolism of carbon allocated to roots in four maize genotypes under water deficit and its effects on productivity. The Crop Journal, 3(5), 379-386. doi: 10.1016/j.cj.2015.04.008
Liu, Y., Subhash, C., Yan, J., Song, C., Zhao, J., & Li, J. (2011). Maize leaf temperature responses to drought: Thermal imaging and quantitative trait loci (QTL) mapping. Environmental and Experimental Botany, 71(2), 158-165. doi: 10.1016/j.envexpbot.2010.11.010
Loomis, W., & Ewan, L. (1936). Hydrotropic responses of roots in soil. Botanical Gazette, 97(4), 728-743.
Lynch, J. P. (2013). Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 112(2), 347-357. doi: 10.1093/aob/mcs293
Magalhães, P. C., Lavinsky, A., Avila, R., Alves, J., Melo, M., Gomes, C., Jr., & Melo, H. (2015). Caracterização do sistema radicular e dos componentes da produtividade em quatro genótipos de milho cultivados sob déficit hídrico. (INFOTECA-E).
Magalhães, P. C., Souza, T. C. de, & Albuquerque, P. E. P. de. (2012). Efeitos do estresse hídrico na produção de grãos e na fisiologia da planta de milho. Sete Lagoas: EMBRAPA Milho e Sorgo. Recuperado de http://ainfo.cnptia.embrapa.br/digital/bitstream/item/72403/1/bol-51.pdf
Magalhães, P. C., Souza, T. C. de, Albuquerque, P. E. P. de, Karam, D., Magalhães, M. M., & Cantão, F. R. D. O. (2009). Caracterização ecofisiológica de linhagens de milho submetidas a baixa disponibilidade hídrica durante o florescimento. Revista Brasileira de Milho e Sorgo, 8(3), 223-232. doi: 10.18512/1980-6477/rbms.v8n3p223-232
Martins, A. O. (2012) Inferências genético-fisiológicas da tolerância à seca em milho. Tese de doutorado, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil.
Monshausen, G. B., & Gilroy, S. (2009). The exploring root—Root growth responses to local environmental conditions. Current Opinion in Plant Biology, 12(6), 766-772. doi: 10.1016/j.pbi.2009.08.002
Mutava, R., Prasad, P., Tuinstra, M., Kofoid, K., & Yu, J. (2011). Characterization of sorghum genotypes for traits related to drought tolerance. Field Crops Research, 123(1), 10-18. doi: 10.1016/j.fcr.2011.04.006
R Core Team (2016). R: A Language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
Rufino, C. de A., Tavares, L. C., Vieira, J., Dörr, C., Villela, F., & Barros, A. (2012). Desempenho de genótipos de milho submetidos ao déficit hídrico no estádio vegetativo. Magistra, 24(3), 217-225.
Santos, D., Guimarães, V. F., Klein, J., Fioreze, S. L., & Macedo Jr., E. K. (2012). Cultivares de trigo submetidas a déficit hídrico no início do florescimento, em casa de vegetação. Revista Brasileira de Engenharia Agrícola e Ambiental, 16(8), 836-842. doi: 10.1590/S1415-43662012000800004
Schenk, H. J., & Jackson, R. B. (2002). The global biogeography of roots. Ecological Monographs, 72(3), 311-328. doi: 10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2
Sousa, R. S. de, Bastos, E. A., Cardoso, M. J., & Pereira, D. R. (2018). Identification of drought-tolerant corn genotypes by multivariate analysis. Pesquisa Agropecuária Tropical, 48(3), 204-211. doi: 10.1590/1983-40632018v4852122
Teixeira, F. F., Gomide, R. L., Albuquerque, P. E. P. de, Andrade, C. L. T. de, Leite, C. E. P., Parentoni, S. N.,... Bastos, E. A. (2010). Evaluation of maize core collection for drought tolerance. Crop Breeding and Applied Biotechnology, 10(4), 312-320. doi: 10.1590/S1984-70332010000400005
Weatherley, P. E. (1950). Studies in the water relations of cotton plants. I. The field measurement of water deficit in leaves. New Phytologist, (49), 81-87. doi: 10.1111/j.1469-8137.1950.tb05146.x
Wijewardana, C., Hock, M., Henry, B., & Reddy, K. R. (2015). Screening corn hybrids for cold tolerance using morphological traits for early-season seeding. Crop Science, 55(2), 851-867. doi: 10.2134/csa2015-60-3-2
Zhan, A., & Lynch, J. P. (2015). Reduced frequency of lateral root branching improves N capture from low-N soils in maize. Journal of Experimental Botany, 66(7), 2055-2065. doi: 10.1093/jxb/erv007
Zhu, J., Brown, K. M., & Lynch, J. P. (2010). Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.). Plant, Cell & Environment, 33(5), 740-749. doi: 10.1111/j.1365-3040.2009.02099.x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Semina: Ciências Agrárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.