Morphology and morphometry in the healing of experimentally induced wounds in rabbits treated with autologous platelet-rich fibrin and bioactive chitosan/xanthan/β-glucan dressing

Authors

DOI:

https://doi.org/10.5433/1679-0359.2025v46n3p843

Keywords:

Biomaterials, Biodressings, Collagenization, Tissue repair.

Abstract

Wound healing presents a dynamic and rapidly growing field of research worldwide. With technological advances, a range of dressings have been developed for different types of wounds, targeting the four phases of healing. Biopolymers, such as chitosan, are used to treat wounds owing to their biocompatibility, biodegradability, and similarity to recognized macromolecules. However, most biopolymer-based formulations have several limitations; combining them with biomaterials such as Platelet-Rich Fibrin (PRF) is considered a promising strategy for wound healing. Hence, in this study, we aimed to analyze the effectiveness of biomaterials, with or without the bioactive dressing comprising chitosan complexed with xanthan and β-glucan, in the healing of induced wounds in rabbits by characterizing the macroscopic and morphometric effects. Twenty-four rabbits were used to investigate the macroscopic changes in wounds that were experimentally induced and treated with autologous platelet-rich fibrin, combined with or without bioactive dressing; the morphological features associated with the healing process were studied on days 7, 14, 21, and 28. The results reflected that the tested biomaterials showed promising wound healing properties, even without presenting the expected synergistic effect; the APRF group demonstrated a higher percentage of contraction than the others, and the membrane group allowed the constant production of fibroblasts over time, which can facilitate the healing process.

Downloads

Download data is not yet available.

Author Biographies

Nadiele Taise Massaranduba, Universidade do Oeste Paulista

Master's Degree Student in the Postgraduate Program in Animal Science, Universidade do Oeste Paulista, UNOESTE, Presidente Prudente, SP, Brazil.

Ana Karla Silva Almeida, Universidade do Oeste Paulista

Undergraduate Student in Veterinary Medicine, UNOESTE, Presidente Prudente, SP, Brazil.

Diego Osvaldo dos Santos, Universidade do Oeste Paulista

Master's Degree Student in the Postgraduate Program in Animal Science, Universidade do Oeste Paulista, UNOESTE, Presidente Prudente, SP, Brazil.

Marco Aurélio da Cruz Nobre, Universidade do Oeste Paulista

Master's Degree Student in the Postgraduate Program in Animal Science, Universidade do Oeste Paulista, UNOESTE, Presidente Prudente, SP, Brazil.

Thaoan Bruno Mariano, Universidade do Oeste Paulista

Doctoral Degree Student in the Postgraduate Program in Animal Science, UNOESTE, Presidente Prudente, SP, Brazil.

Valter Dias da Silva, Universidade do Oeste Paulista

Doctoral Degree Student in the Postgraduate Program in Animal Science, UNOESTE, Presidente Prudente, SP, Brazil.

Marcia Zilioli Bellini, Faculdade de Itaituba

Pro-Rectory of Research and Graduate Studies, Centro Universitário de Adamantina, FAI, Adamantina, SP, Brazil.

Rosa Maria Barilli Nogueira, Universidade do Oeste Paulista

Profa. Dra. in the Postgraduate Program in Animal Science, UNOESTE, Presidente Prudente, SP, Brazil.

Cecília Laposy Santarém, Universidade do Oeste Paulista

Profa. Dra. in the Postgraduate Program in Animal Science, UNOESTE, Presidente Prudente, SP, Brazil.

References

Adhikari, B., Stager, M. A., & Krebs, M. D. (2023). Cellâ€instructive biomaterials in tissue engineering and regenerative medicine. Journal of Biomedical Materials Research Part A, 111(5), 660-681. doi: 10.1002/jbm.a.37510 DOI: https://doi.org/10.1002/jbm.a.37510

Ã…gren, M. S., Mertza, P. M., & Franzén, L. (1997). A comparative study of three occlusive dressings in the treatment of full-thickness wounds in pigs. Journal of the American Academy of Dermatology, 36(1), 53-58. doi: 10.1016/S0190-9622(97)70325-6 DOI: https://doi.org/10.1016/S0190-9622(97)70325-6

Bai, L., Zhang, X., Li, X., Wang, S., Zhang, Y., & Xu, G. (2023). Impact of a novel hydrogel with injectable plateletâ€rich fibrin in diabetic wound healing. Journal of Diabetes Research, 2023(1), 7532637. doi: 10.1155/2023/7532637 DOI: https://doi.org/10.1155/2023/7532637

Bellini, M. Z., Oliva, P. D., Neto, & Moraes, Â. M. (2015). Properties of films obtained from biopolymers of different origins for skin lesions therapy. Brazilian Archives of Biology and Technology, 58(2), 289-299. doi: 10.1590/S1516-8913201500305 DOI: https://doi.org/10.1590/S1516-8913201500305

Bellini, M. Z., Pires, A. L. R., Vasconcelos, M. O., & Moraes, A. M. (2012). Comparison of the properties of compacted and porous lamellar chitosan xanthan membranes as dressings and scaffolds for the treatment of skin lesions. Journal of Applied Polymer Science, 125(S2), E421-E431. doi: 10.1002/app.36693 DOI: https://doi.org/10.1002/app.36693

Bilgen, F., Ural, A., & Bekerecioglu, M. (2021). Platelet-rich fibrin: an effective chronic wound healing accelerator. Journal of Tissue Viability, 30(4), 616-620. doi: 10.1016/j.jtv.2021.04.009 DOI: https://doi.org/10.1016/j.jtv.2021.04.009

Budiarso, I. J., Rini, N. D., Tsalsabila, A., Birowosuto, M. D., & Wibowo, A. (2023). Chitosan-based smart biomaterials for biomedical applications: Progress and perspectives. ACS Biomaterials Science & Engineering, 9(6), 3084-3115. doi: 10.1021/acsbiomaterials.3c00216 DOI: https://doi.org/10.1021/acsbiomaterials.3c00216

Burkatovskaya, M., Tegos, G. P., Swietlik, E., Demidova, T. N., Castano, A. P., & Hamblin, M. R. (2006). Use of chitosan bandage to prevent fatal infections developing from highly contaminated wounds in mice. Biomaterials, 27(22), 4157-4164. doi: 10.1016/j.biomaterials.2006.03.028 DOI: https://doi.org/10.1016/j.biomaterials.2006.03.028

Camargo, F. F. (2013). Efeito do plasma rico em plaquetas e da fibrina rica em plaquetas na cicatrização de feridas cutâneas em ratos. Dissertação de mestrado, Pontifícia Universidade Católica, Porto Alegre, RS, Brasil. https://tede2.pucrs.br/tede2/handle/tede/1750

Canellas, J. D. S., Ritto, F. G., & Medeiros, P. J. D. (2017). Evaluation of postoperative complications after mandibular third molar surgery with the use of platelet-rich fibrin: a systematic review and meta-analysis. International Journal of Oral and Maxillofacial Surgery, 46(9), 1138-1146. doi: 10.1016/j.ijom.2017.04.006 DOI: https://doi.org/10.1016/j.ijom.2017.04.006

Castro, A. B., Herrero, E. R., Slomka, V., Pinto, N., Teughels, W., & Quirynen, M. (2019). Antimicrobial capacity of leucocyte-and platelet rich fibrin against periodontal pathogens. Scientific Reports, 9(1), 8188. doi: 10.1902/jop.1965.36.3.177 DOI: https://doi.org/10.1038/s41598-019-44755-6

Choudhary, P., Ramalingam, B., & Das, S. K. (2020). Fabrication of chitosan-reinforced multifunctional graphene nanocomposite as antibacterial scaffolds for hemorrhage control and wound-healing application. ACS Biomaterials Science & Engineering, 6(10), 5911-5929. doi: 10.1021/acsbiomaterials.0c00923 DOI: https://doi.org/10.1021/acsbiomaterials.0c00923

Cianca, L. O. A., Nakasse, T. S. L., Damasceno, Y. W., Silva, T. G. Q. da, Gorup, L. F., Silva, V. D. da, & Bellini, M. Z. (2020). Caracterização físico-química de biocurativos dérmo-epidérmicos de Quitosana, Xantana e Beta-Glucana. Brazilian Journal of Health Review, 3(3), 5631-5650. doi: 10.34119/bjhrv3n3-132 DOI: https://doi.org/10.34119/bjhrv3n3-132

Dec, P., Modrzejewski, A., & Pawlik, A. (2023). Existing and novel biomaterials for bone tissue engineering. International Journal of Molecular Sciences, 24(1), 529. doi: 10.3390/ijms24010529 DOI: https://doi.org/10.3390/ijms24010529

Dohan, E. D. M., Andia, I., Zumstein, M. A., Zhang, C. Q., Pinto, N. R., & Bielecki, T. (2014). Classification of platelet concentrates (Platelet-Rich Plasma-PRP, Platelet-Rich Fibrin-PRF) for topical and infiltrative use in orthopedic and sports medicine: current consensus, clinical implications and perspectives. Muscles, Ligaments and Tendons Journal, 4(1), 3-9. PMID: 24932440 DOI: https://doi.org/10.32098/mltj.01.2014.02

Dzionek, A., Wojcieszyńska, D., & Guzik, U. (2022). Use of xanthan gum for whole cell immobilization and its impact in bioremediation-a review. Bioresource Technology, 351, 126918. doi: 10.1016/j.biortech.2022.126918 DOI: https://doi.org/10.1016/j.biortech.2022.126918

Ezoddini-Ardakani, F., Azam, A. N., Yassaei, S., Fatehi, F., & Rouhi, G. (2011). Effects of chitosan on dental bone repair. Health, 3(4), 200-205. doi: 10.4236/health.2011.34036 DOI: https://doi.org/10.4236/health.2011.34036

Farmani, A. R., Nekoofar, M. H., Ebrahimi Barough, S., Azami, M., Rezaei, N., Najafipour, S., & Ai, J. (2021). Application of platelet rich fibrin in tissue engineering: focus on bone regeneration. Platelets, 32(2), 183-188. doi: 10.1080/09537104.2020.1869710 DOI: https://doi.org/10.1080/09537104.2020.1869710

Herrera-Vizcaíno, C., Dohle, E., Al-Maawi, S., Booms, P., Sader, R., Kirkpatrick, C. J. & Ghanaati, S. (2019). Platelet-rich fibrin secretome induces three dimensional angiogenic activation in vitro. Eur Cell Mater, 37, 250-264. doi: 10.22203/eCM.v037a15 DOI: https://doi.org/10.22203/eCM.v037a15

Jayakumar, R., Prabaharan, M., Kumar, P. S., Nair, S. V., & Tamura, H. J. B. A. (2011). Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology Advances, 29(3), 322-337. doi: 10.1016/j.biotechadv.2011.01.005 DOI: https://doi.org/10.1016/j.biotechadv.2011.01.005

Karimi, K., & Rockwell, H. (2019). The benefits of platelet-rich fibrin. Facial Plastic Surgery Clinics, 27(3), 331-340. doi: 10.1016/j.fsc.2019.03.005 DOI: https://doi.org/10.1016/j.fsc.2019.03.005

Kassambara, A. K. (2023). Pipe-friendly framework for basic statistical tests. R Package version 0.7, 2. Rstatix.

Kobayashi, E., Flückiger, L., Fujioka-Kobayashi, M., Sawada, K., Sculean, A., Schaller, B., & Miron, R. J. (2016). Comparative release of growth factors from PRP, PRF, and advanced-PRF. Clinical Oral Investigations, 20, 2353-2360. doi: 10.1007/s00784-016-1719-1 DOI: https://doi.org/10.1007/s00784-016-1719-1

Kumar, M. R., Muzzarelli, R., Muzzarelli, C., Sashiwa, H., & Domb, A. J. (2004). Chitosan chemistry and pharmaceutical perspectives. Chemical Reviews, 104(12), 6017-6084. doi: 10.1021/cr030441b DOI: https://doi.org/10.1021/cr030441b

Lourenço, E. S., Mourão, C. F. D. A. B., Leite, P. E. C., Granjeiro, J. M., Calasansâ€Maia, M. D., & Alves, G. G. (2018). The in vitro release of cytokines and growth factors from fibrin membranes produced through horizontal centrifugation. Journal of Biomedical Materials Research Part A, 106(5), 1373-1380. doi: 10.1002/jbm.a.36346 DOI: https://doi.org/10.1002/jbm.a.36346

Mascharak, S., & Longaker, M. T. (2020). Fibroblast heterogeneity in wound healing: hurdles to clinical translation. Trends in Molecular Medicine, 26(12), 1101-1106. doi: 10.1016/j.molmed.2020.07.008 DOI: https://doi.org/10.1016/j.molmed.2020.07.008

Mio, K., Yamanaka, C., Matsuoka, T., Kobayashi, T., & Aoe, S. (2020). Effects of β-glucan rich barley flour on glucose and lipid metabolism in the ileum, liver, and adipose tissues of high-fat diet induced-obesity model male mice analyzed by DNA microarray. Nutrients, 12(11), 3546. doi: 10.3390%2Fnu12113546 DOI: https://doi.org/10.3390/nu12113546

Nakasse, T. S. L., Cianca, L. O. A., Damasceno, Y. W., Silva, T. G. Q. da, Silva, V. D. da, Toffoli, L. M. N., & Bellini, M. Z. (2020). Padronização da produção de biocurativos Dérmo-Epidérmicos de Quitosana, Xantana e Beta-Glucana. Brazilian Journal of Health Review, 3(3), 5496-5506. doi: 10.34119/bjhrv3n3-121 DOI: https://doi.org/10.34119/bjhrv3n3-121

Narang, I., Mittal, N., & Mishra, N. (2015). A comparative evaluation of the blood clot, platelet-rich plasma, and platelet-rich fibrin in regeneration of necrotic immature permanent teeth: a clinical study. Contemporary Clinical Dentistry, 6(1), 63-68. doi: 10.4103/0976-237x.149294 DOI: https://doi.org/10.4103/0976-237X.149294

Pohlert, T. (2023). Calculate pairwise multiple comparisons of mean rank sums extended. R package. https://cran.r-project.org/web/packages/PMCMRplus

Qin, Y., & Li, P. (2020). Antimicrobial chitosan conjugates: current synthetic strategies and potential applications. International Journal of Molecular Sciences, 21(2), 499. doi: 10.3390/ijms21020499 DOI: https://doi.org/10.3390/ijms21020499

R Core Team (2024). R: a language and environment for statistical computing. Foundation for Statistical Computing.

Sarkar, S., Prashanth, N. T., Shobha, E. S., Rangan, V., & Nikhila, G. (2019). Efficacy of platelet rich fibrin versus chitosan as a hemostatic agent following dental extraction in patients on antiplatelet therapy. Journal of Oral Biology and Craniofacial Research, 9(4), 336-339. doi: 10.1016%2Fj.jobcr.2019.07.003 DOI: https://doi.org/10.1016/j.jobcr.2019.07.003

Sezgin, B., Tatar, S., Karahuseyinoglu, S., Sahin, G. N., Ergun, Y., Meric, G., & Ersoy, K. (2021). The effects of oral mucosa-derived heterotopic fibroblasts on cutaneous wound healing. Journal of Plastic, Reconstructive & Aesthetic Surgery, 74(10), 2751-2758. doi: 10.1016/j.bjps.2021.02.011 DOI: https://doi.org/10.1016/j.bjps.2021.02.011

Tetila, A. F., Breda, M. R. S., Nogueira, R. M. B., Nai, G. A., Laposy, C. B. The use of Platelet-Rich Plasma and Rosuvastatin in Wound Healing in Rabbits: A Longitudinal Study (2019). Advances in Skin and Wound Care, 32(9), 1-5. doi: 10.1097/01.ASW.0000577136.88748.68 DOI: https://doi.org/10.1097/01.ASW.0000577136.88748.68

Varghese, M. P., Manuel, S., Kumar, L. K. S. (2017). Potential for osseous regeneration of platelet-rich fibrin a comparative study in mandibular third molar impaction sockets. Journal of Oral and Maxillofacial Surgery, 75(7), 1322-1329. doi: 10.1016/j.joms.2017.01.035 DOI: https://doi.org/10.1016/j.joms.2017.01.035

Vendramin, F. S., Franco, D., Schamall, R. F., Franco, T. R. (2010). Utilização do plasma rico em plaquetas (PRP) autólogo em enxertos cutâneos em coelhos. Revista Brasileira de Cirurgia Plástica, 25(4), 4-10. doi: 10.1590/S1983-51752010000400004 DOI: https://doi.org/10.1590/S1983-51752010000400004

Wang, X., Zhang, Y., Choukroun, J., Ghanaati, S., & Miron, R. J. (2018). Effects of an injectable platelet-rich fibrin on osteoblast behavior and bone tissue formation in comparison to platelet-rich plasma. Platelets, 29(1), 48-55. doi: 10.1080/09537104.2017.1293807 DOI: https://doi.org/10.1080/09537104.2017.1293807

Zhang, W., Jin, X., Li, H., Zhang, R. R., & Wu, C. W. (2018). Injectable and body temperature sensitive hydrogels based on chitosan and hyaluronic acid for pH sensitive drug release. Carbohydrate Polymers, 186, 82-90. doi: 10.1016/j.carbpol.2018.01.008 DOI: https://doi.org/10.1016/j.carbpol.2018.01.008

Downloads

Published

2025-06-12

How to Cite

Massaranduba, N. T., Almeida, A. K. S., Santos, D. O. dos, Nobre, M. A. da C., Mariano, T. B., Silva, V. D. da, … Santarém, C. L. (2025). Morphology and morphometry in the healing of experimentally induced wounds in rabbits treated with autologous platelet-rich fibrin and bioactive chitosan/xanthan/β-glucan dressing. Semina: Ciências Agrárias, 46(3), 843–860. https://doi.org/10.5433/1679-0359.2025v46n3p843

Issue

Section

Articles