Effects of a multicarbohydrase complex and corn distillers dried grains on performance, nutrient digestibility, carcass yield and intestinal health in broilers

Authors

DOI:

https://doi.org/10.5433/1679-0359.2025v46n3p919

Keywords:

Corn, Enzymes, Intestinal quality, Non-starch polysaccharides, Short-chain fatty acids.

Abstract

The aim of this study was to evaluate the effects of supplementing broiler diets containing different levels of corn distillers dried grains with solubles (DDGS) with a multicarbohydrase complex on productive performance, carcass yield, nutrient digestibility and intestinal health. A total of 2016 one-day-old chicks were randomly assigned to a 4 × 2 factorial scheme (4 levels of DDGS inclusion × with and without enzyme supplementation). Productive performance was assessed weekly until 42 days of age by weighing the birds and leftover feed. At 21 days, 96 birds were transferred to metabolism cages and allocated to eight treatments with six replicates each for a digestibility trial, using total excreta collection. DDGS inclusion in poultry diets negatively affected production performance and carcass and commercial cut yields regardless of enzyme supplementation (p<0.05). However, supplementation with the multicarbohydrase complex increased apparent metabolizable energy (AME), nitrogen-corrected apparent metabolizable energy (AMEn) and neutral detergent fiber digestibility in diets with up to 10% DDGS (p<0.05). The inclusion of DDGS led to a smaller absorption area in the jejunal and ileal mucosa (p<0.05) and decreased digestibility coefficients for dry matter, crude protein, and ether extract in broilers diets (p<0.05). Enzyme supplementation increased cecal acetic acid concentrations and improved dry matter digestibility, crude protein and acid detergent fiber (p<0.05). The variability of its nutritional composition means that the use of DDGS in poultry diets should be approached with caution. The results demonstrated that the DDGS source tested is unsuitable for starter broiler diets and, for use in grower and finisher phases, should not exceed 10% inclusion rate without concurrent multicarbohydrase complex supplementation. Therefore, to ensure the safe use of DDGS in broiler diets, significant improvements in the standardization and quality of this product are essential.

Downloads

Download data is not yet available.

Author Biographies

Daiane Horn, Universidade Federal do Paraná

Student of the Postgraduate Program in Animal Science, Universidade Federal do Paraná, UFPR, Palotina, PR, Brazil.

Cassiano Leopoldo Pasa, Universidade Federal do Paraná

Student of the Postgraduate Program in Animal Science, Universidade Federal do Paraná, UFPR, Palotina, PR, Brazil.

Ana Clara Polo Ferreira, Universidade Federal do Paraná

Undergraduate Student in Veterinary Medicine, UFPR, Palotina, PR, Brazil.

Beatriz Tiemi Onishi, Universidade Federal do Paraná

Student of the Postgraduate Program in Animal Science, Universidade Federal do Paraná, UFPR, Palotina, PR, Brazil.

Isadora Pegoraro Pallaoro, Universidade Federal do Paraná

Student of the Postgraduate Program in Animal Science, Universidade Federal do Paraná, UFPR, Palotina, PR, Brazil.

Felipe Evangelista de Souza, Universidade Federal do Paraná

Undergraduate Student in Veterinary Medicine, UFPR, Palotina, PR, Brazil.

Regina Buzim, Universidade Federal do Paraná

Student of the Postgraduate Program in Animal Science, Universidade Federal do Paraná, UFPR, Palotina, PR, Brazil.

Jovanir Inês Müller Fernandes, Universidade Federal do Paraná

Profa. Dra., Department of Zootechnics, Graduate Animal Science Program, UFPR, Palotina, PR, Brazil.

References

Apperson, K. D., & Cherian, G. (2017). Effect of whole flax seed and carbohydrase enzymes on gastrointestinal morphology, muscle fatty acids, and production performance in broiler chickens. Poultry Science, 96(5), 1228-1234. doi: 10.3382/ps/pew371

Aviagen (2018). ROSS - Manual de manejo de frangos de corte. https://aviagen.com/assets/Tech_Center/BB_Foreign_Language_Docs/Portuguese/Ross-Broiler Handbook2018-PT.pdf

Batal, A. B., & Parsons, C. M. (2002). Effects of age on development of digestive organs and performance of chicks fed a corn-soybean meal versus a crystalline amino acid diet. Poultry Science, 81(9), 1338-1341. doi: 10.1093/ps/81.9.1338

Böttger, C., & Südekum, K. H. (2018). Protein value of distillers dried grains with solubles (DDGS) in animal nutrition as affected by the ethanol production process: a review. Animal Feed Science and Technology, 244(1), 11-17. doi: 10.1016/j.anifeedsci.2018.07.018

Campasino, A., Williams, M., Latham, R., Bailey, C., Brown, B., & Lee, J. (2015). Effects of increasing dried distillers' grains with solubles and non-starch polysaccharide degrading enzyme inclusion on growth performance and energy digestibility in broilers. Journal of Applied Poultry Research, 24(2), 135-144. doi: 10.3382/japr/pfv018

Cowieson, A. J., Vieira, S. L., & Stefanello, C. (2019). Exogenous microbial amylase in the diets of poultry: what do we know? Journal of Applied Poultry Research, 28(3), 556-565. doi: 10.3382/japr/pfy044

Dal Pont, G. C., Eyng, C., Bortoluzzi, C., & Kogut, M. H. (2022). Enzymes and gut health in monogastric animals: effects beyond digestibility. In Gut microbiota, immunity, and health in production animals (pp. 33-55). Cham, Switzerland: Springer International Publishing.

Damasceno, J. L., Rocha, C. S., Eyng, C., Broch, J., Savaris, V. D., Wachholz, L., & Nunes, R. V. (2020). Corn distillers' dried grains with solubles to feed broiler chickens from 22 to 42 D of age. Journal of Applied Poultry Research, 29(3), 573-583. doi: 10.1016/j.japr.2020.03.004

De Vadder, F., Kovatcheva-Datchary, P., Goncalves, D., Vinera, J., Zitoun, C., Duchampt, A., & Mithieux, G. (2014). Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell, 156(1), 84-96. doi: 10.1016/j.cell.2013.12.016

El-Hack, M. E. A., Alagawany, M., & Farag, M. R. (2015). Use of maize distiller's dried grains with solubles (DDGS) in laying hen diets: trends and advances. Asian Journal of Animal Veterinary Advances, 10(11), 690-707. doi: 10.3923/ajava.2015.690.707

Jha, R., & Berrocoso, J. D. (2015). Dietary fiber utilization and its effects on physiological functions and gut health of swine: a review. Animal, 9(9), 1441-1452. doi: 10.1017/S1751731115000919

Kheravii, S. K., Morgan, N. K., Swick, R. A., Choct, M., & Wu, S. B. (2018). Roles of dietary fibre and ingredient particle size in broiler nutrition. World's Poultry Science Journal, 74(2), 301-316. doi: 10.1017/S0043933918000259

Kim, J. S., Hosseindoust, A. R., Shim, Y. H., Lee, S. H., Choi, Y. H., Kim, M. J., & Chae, B. J. (2018). Processing diets containing corn distillers' dried grains with solubles in growing broiler chickens: effects on performance, pellet quality, ileal amino acids digestibility, and intestinal microbiota. Poultry Science, 97(7), 2411-2418. doi: 10.3382/ps/pey075

Kisielinski, K., Willis, S., Prescher, A., Klosterhalfen, B., & Schumpelick, V. (2002). A simple new method to calculate small intestine absorptive surface in the rat. Clinical and Experimental Medicine, 2(1), 131-135. doi: 10.1007/s102380200018

Latorre, J. D., Hernandez-Velasco, X., Vicente, J., Wolfenden, R., Hargis, B. M., & Tellez, G. (2017). Effects of the inclusion of a Bacillus direct-fed microbial on performance parameters, bone quality, recovered gut microflora, and intestinal morphology in broilers consuming a grower diet containing corn distillers dried grains with solubles. Poultry Science, 96(8), 2728-2735. doi: 10.3382/ps/pex082

Lewandrowski, J., Rosenfeld, J., Pape, D., Hendrickson, T., Jaglo, K., & Moffroid, K. (2019). The greenhouse gas benefits of corn ethanol-assessing recent evidence. Biofuel, 11(3), 1-15. doi: 10.1080/17597269.2018.1546488

Liu, K. (2011). Chemical composition of distillers grains: a review. Journal of Agricultural and Food Chemistry, 59(5), 1508-1526. doi: 10.1021/jf103512z

Macambira, G. M., Rabello, C. B. V., Lopes, C. C., Santos, M. J. B., Ribeiro, A. G., Oliveira, H. S. H., & Silva, J. M. S. (2021). Carboidrases exógenas e a saúde intestinal de aves. Research, Society and Development, 10(7), e48910716774-e48910716774. doi: 10.33448/rsd-v10i7.16774

Mathlouthi, N., Mallet, S., Saulnier, L., Quemener, B., & Larbier, M. (2002). Effects of xylanase and beta-glucanase addition on performance, nutrient digestibility, and physico-chemical conditions in the small intestine contents and caecal microflora of broiler chickens fed a wheat and barley-based diet. Animal Research, 51(5), 395-406. doi: 10.1051/animres:2002034

Matterson, L. D., Potter, L. M., Stutz, M. W., & Singsen, E. P. (1965). The metabolizable energy of feed ingredients for chickens. University of Connecticut, Agricultural Experiment Station, Research Report, Storrs, Connecticut, 7(1), p. 11-14.

Min, Y. N., Li, L. L., Liu, S. K., Zhang, J., Gao, Y. P., & Liu, F. Z. (2015). Effects of dietary distillers dried grains with solubles (DDGS) on growth performance, oxidative stress, and immune function in broiler chickens. Journal of Applied Poultry Research, 24(1), 23-29. doi: 10.3382/japr/pfv002

Ministério da Agricultura e Pecuária (2024). Exportações brasileiras de milho. MAPA. https://www.gov.br/agricultura/pt.br/assuntos/relacoesinternacionais/documentos/Milho.pdf

Morgan, N. K., Keerqin, C., Wallace, A., Wu, S. B., & Choct, M. (2019). Effect of arabinoxylo-oligosaccharides and arabinoxylans on net energy and nutrient utilization in broilers. Animal Nutrition, 5(1), 56-62. doi: 10.1016/j.aninu.2018.05.001

Pack, M., Bedford, M., & Wyatt, C. (1998). Feed enzymes may improve corn, sorghum diets. Feedstuffs, 70(1), (Special issue), 18-19.

Raza, A., Bashir, S., & Tabassum, R. (2019). An update on carbohydrases: growth performance and intestinal health of poultry. Heliyon, 5(4), e01437. doi: 10.1016/j.heliyon.2019.e01437

Sakomura, N. K., & Rostagno, H. (2007). Métodos de pesquisa em nutrição de monogástricos. FUNEP.

Schone, R. A., Nunes, R. V., Frank, R., Eyng, C., & Castilha, L. D. (2017). Resíduo seco de destilaria com solúveis (DDGS) na alimentação de frangos de corte (22-42 dias). Revista Ciência Agronômica, 48(3), 548-557. doi: 10.5935/1806-6690.20170064

Selvaraj, C., Rudhra, O., Alothaim, S. A., Alkhanani, M., & Singh, S. K. (2017). Chapter three - structure and chemistry of enzymatic active sites that play a role in the switch and conformation mechanism. Advances in Protein Chemistry and Structural Biology, 130(1), 59-83. doi: 10.1016/bs.apcsb.2022.02.002

Smith, M. O. (1993). Nutrient content of carcass parts from broilers reared under cycling high temperatures. Poultry Science, 72(11), 2166-2171. doi: 10.3382/ps.0722166

Svihus, B., Choct, M., & Classen, H. L. (2013). Function and nutritional roles of the avian caeca: a review. World Poultry Science Journal, 69(2), 249-264. doi: 10.1017/S0043933913000287

ÅšwiÄ…tkiewicz, S., & Koreleski, J. (2006). Effect of maize distillers dried grains with solubles and dietary enzyme supplementation on the performance of laying hens. Journal of Animal and Feed Science, 15(2), 253-260. doi: 10.22358/jafs/66897/2006

Swiatkiewicz, S., Swiatkiewicz, M., Arczewska-Wlosek, A., & Jozefiak, D. (2016). Efficacy of feed enzymes in pig and poultry diets containing distillers dried grains with solubles: a review. Journal of Animal Physiology and Animal Nutrition, 100(1), 15-26. doi: 10.1111/jpn.12351

Teng, P., & Kim, W. K. (2018). Roles of prebiotics in intestinal ecosystem of broilers. Frontiers in Veterinary Science, 5(1), 2297-1769. doi: 10.3389/fvets.2018.00245

U.S. Energy Information Administration (2023). Fuel ethanol plant production capacity. EIA. https://www.eia.gov/petroleum/ethanolcapacity/

Valentim, J. K., Lima, H. J. D. A., Bittencourt, T. M., Velarde, J. M. D. S., Silva, L. K. S. D., Procopio, D. P., & Mendes, J. P. (2020). Quality of broilers fed diets containing dry distillery grains. Journal of Agricultural Studies, 8(1), 357-370. doi: 10.5296/jas.v8i1.16115

Ward, N. E. (2021). Debranching enzymes in corn/soybean meal based poultry feeds: a review. Poultry Science, 100(2), 765-775. doi: 10.1016/j.psj.2020.10.074

Xu, X., & Zhang, Y. (2021). Network analysis of corn cash price comovements. Machine Learning with Applications, 6(1), 100140. doi: 10.1016/j.mlwa.2021.100140

Yadav, S., & Jha, R. (2019). Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. Journal of Animal Science and Biotechnology, 10(2), 1-11. doi: 10.1186/s40104-018-0310-9

Zhang, L., Xu, J., Lei, L., Jiang, Y., Gao, F., & Zhou, G. H. (2014). Effects of xylanase supplementation on growth performance, nutrient digestibility and non-starch polysaccharide degradation in different sections of the gastrointestinal tract of broilers fed wheat-based diets. Asian-Australasian Journal of Animal Science, 27(6), 855-861. doi: 10.5713/ajas.2014.14006

Downloads

Published

2025-06-18

How to Cite

Horn, D., Pasa, C. L., Ferreira, A. C. P., Onishi, B. T., Pallaoro, I. P., Souza, F. E. de, … Fernandes, J. I. M. (2025). Effects of a multicarbohydrase complex and corn distillers dried grains on performance, nutrient digestibility, carcass yield and intestinal health in broilers. Semina: Ciências Agrárias, 46(3), 919–942. https://doi.org/10.5433/1679-0359.2025v46n3p919

Issue

Section

Articles