Energy valorization matrices for dietary carbohydrases and their effects on the behavior of grower and finisher pigs
DOI:
https://doi.org/10.5433/1679-0359.2025v46n3p789Keywords:
Alpha-amylase, Beta-mannanase, Closed-circuit video camera, Generalized linear model, Pig behavioral frequency.Abstract
This study aimed to assess the effect of exogenous carbohydrases (α-amylase or β-mannanase) in diets with reduced levels of metabolizable energy (ME) containing or not xylanase-phytase on the behavioral traits of grower and finisher pigs. In the first experiment, 42 crossbred male pigs (Landrace × Large White), initially weighing 25.81± 0.20 kg, were allotted to a completely randomized design with six treatments, seven replications, and one pig per pen as the experimental unit (UE). The treatments consisted of the combination of two classes of a-amylase (no enzyme and enzyme-added at 100 g α-amylase ton-1 diet) and three levels of ME reduction (0, 50, and 100 kcal of ME kg-1). In the second experiment, 40 crossbred male pigs (Landrace × Large White), initially weighing 26.0 ± 0.9 kg, were allotted to a randomized block design with four treatments, ten replications, and one animal per EU. The experimental treatments containing xylanase and valued at 40 kcal ME kg-1 were: reference diet (RD) with no β-mannanase supplementation and RD containing 300 g β-mannanase t-1 and reduced by 30, 45 and 60 kcal of ME kg-1, comprising a total energy reduction (β-mannanase and xylanase) as follows: 0 + 40 (RD40), 30 + 40 (RD70), 45 + 40 (RD85), and 60 + 40 (RD100). The behavioral observations of grower and finisher pigs were recorded via closed-circuit video cameras installed in the upper part of the shed. In experiment I, an interaction between amylase enzyme (ENZ) and dietary ME reduction (ENZ*ME) was observed (P < 0.05) on the frequency (%) of standing, idleness, sleeping, and interactive behaviors in grower I pigs. Similarly, an interaction between ENZ and ME was observed for standing, lying down, feeding, and interactive behaviors in grower II pigs. There was an effect of ENZ*EM (P < 0.05) on lying down and interactive behavior in finisher I pigs and on standing, feeding, drinking, and sleeping behaviors in finisher II pigs. In the second experiment, there was an effect (P < 0.05) of energy valorization matrix (EVM) for β-mannanase in the idleness behavior of grower II pigs and on standing, lying down, idleness, and feeding behaviors in finisher II pigs. Including 100 g α-amylase t-1 in diets reduced by up to 50 kcal of ME kg-1 increases the feed intake frequency of grower II pigs. Including 300 g β-mannanase and 400 g xylanase t-1 in diets reduced by 70 and 85 kcal ME per kg increases the percentage of feed intake of finisher II pigs.
Downloads
References
Alves, C. P., Eugênio, D. S., Souza, L. F. de, Santos, J. P. A. de S., Silva, J. O. N. da, Silva, A. R., Santos, T. S. dos, & Silva, T. G. F. da. (2020). Influence of temperature and relative humidity in food consumption of swine in the Brazilian semiarid region. Brazilian Journal of Animal and Environmental Research, 3(4), 4263-4269. doi: 10.34188/bjaerv3N4-122
Arsenault, R. J., Lee, J. T., Latham, R., & Carter, B. (2017). Changes in immune and metabolic gut response in broilers fed β-mannanase in β-mannan containing diets. Poultry Science, 96(12), 4307-4316. doi: 10.3382/PS/PEX246
Bach Knudsen, K. E. (2014). Fiber and non-starch polysaccharide content and variation in common crops used in broiler diets. Poultry Science, 93(9), 2380-2393. doi: 10.3382/PS.2014-03902
Brewster, L. R., Dale, J. J., Guttridge, T. L., Gruber, S. H., Hansell, A. C., Elliott, M., Cowx, I. G., Whitney, N. M., & Gleiss, A. C. (2018). Development and application of machine learning algorithm for classification of elasmobranch behavior from accelerometry data. Marine Biology, 165(4), 62-81. doi: 10.1007/s00227-018-3318-y.
Cross, A. J., Brown-Brandl, T. M., Keel, B. N., Kassady, J. P., & Rohrer, G. A. (2020). Feeding behavior of grow-finish swine and the impacts of heat stress. Translational Animal Science, 4(2), 986-992. doi: 10.1093/tas/txaa023
Dias, C. P., Silva, C. A., & Manteca, X. (2014). Pig welfare. UEL.
Genova, J. L., Rupolo, P. E., Azevedo, L. B., Henz, D., Carvalho, S. T., Kipper, M., Gonçalves, G. A. C., Vilela, H. L. O., Pasquetti, T. J., Oliveira, N. T. E., Dietrich, A. R. M., & Carvalho, P. L. O. (2023). β-mannanase supplementation in diets reduced in 85 kcal metabolizable energy/kg containing xylanase-phytase improves gain to feed ratio, nutrient usage, and backfat thickness in finisher pigs. Frontiers in Veterinary Science, 10, 1144692. doi: 10.3389/fvets.2023.1144692
Gomes, B. K., Cony, B. S. L., & Stella, L. (2019). Exogenous enzymes in pig feed. Nutritime Electronic Journal, 16(3), 8477-8487.
Jackson, M. E., Geronian, K., Knox, A., Mcnab, J., & Mccartney, E. (2004). A dose response study with the feed enzyme β-mannanase in broilers provided with corn-soybean meal based diets in the absence of antibiotic growth promoters. Poultry Science, 83(12), 1992-1996. doi: 10.1093/ps/83.12.1992
Li, Q., & Patience, J. F. (2017). Factors involved in the regulation of feed and energy intake of pigs. Animal Feed Science and Technology, 233, 22-33. doi: 10.1016/j.anifeedsci.2016.01.001
Martin, P., & Bateson, P. (1986). Measuring behaviour: an introductory guide. Cambridge University Press.
Massari, J. M., Curi, T. M. R. C., Moura, D. J., Medeiros, B. B. L., & Salgado, D. D. (2015). Behavioral characteristics of grower and finisher pigs in a "wean to finish" system. Agricultural Engineering, 35(4), 646-656. doi: 10.1590/1809-4430-Eng.Agric.v35n4p646-656/2015
Nyachoti, C. M., Zijlstra, R. T., Lange, C. F. M., & Patience, J. F. (2004). Voluntary feed intake in grower-finisher pigs: a review of the main determining factors and potential approaches for accurate predictions. Canadian Journal of Animal Science, 84(4), 549-566. doi: 10.4141/A04-001
Paiano, D., Barbosa, O. R., Moreira, I., Quadros, A. R. B., Silva, M. A. A. da, & Oliveira, C. A. L. de. (2007). Behavior of pigs housed in partially slatted floor stalls or with water depth. Acta Scientiarum. Animal Sciences, 29(3), 345-351. doi: 10.4025/actascianimsci.v29i3.575
Rostagno, H. S., Albino, L. F. T., Donzele, J. L., Oliveira, R. F., Barreto, S. L. T., Hannas, M. I., Donzele, J. L., Sakomura, N. K., Perazzo, F. G., Saraiva, A., Abreu, M. L.T., Rodrigues, P. B., Oliveira, R. F., Barreto, S. L. T., Brito, C. O. (2017). Brazilian tables for poultry and pork: feed composition and nutritional requirements. UFV.
Ruiz, U. D. S., Thomaz, M. C., Hannas, M. I., Fraga, A. L., Watanabe, P. H., & Silva, S. Z. da. (2008). Enzyme complex for pigs: digestion, metabolism, performance and environmental impact. Brazilian Journal of Animal Science, 37(3), 458-468. doi: 10.1590/S1516-35982008000300011
Rupolo, P. E., Monteiro, D. P., Ribeiro, T. P., Azevedo, L. B., Gregory, C. R., Careli, P. S., Carvalho, S. T., Paiano, D., Hannas, M. I., Nunes, R. V., Silva, M. A. A., Genova, J. L., & Carvalho, P. L. O. (2023). Effects of supplementation of α-amylase alone in a model of grower and finisher pigs fed metabolizable energy-reduced diets. Livestock Science, 278, 105361. doi: 10.1016/j.livsci.2023.105361
Sakomura, N. K., Silva, H. V., & Costa, G. P. C. (2014). Nutrition of non-ruminants. Funep.
Shastak, Y., Ader, P., Feuerstein, D., Rühle, R., & Matuschek, M. (2015). ß-Manan and mannanase in poultry nutrition. World's Poultry Science Journal., 71(1), 161-174. doi: 10.1017/s0043933915000136
Souza da Silva, C., Haenen, D., Koopmans, S. J., Hooiveld, G. J. E. J., Bosch, G., Bolhuis, J. E., Kemp, B., Müller, M., & Gerrits, W. J. J. (2014). Effects of resistant starch on behaviour, satiety-related hormones and metabolites in grower pigs. Animal, 8(9), 1402-1411. doi: 10.1017/S1751731114001116
Tavernari, F. C., Carvalho, T. A., Assis, A. P., & Lima, H. J. D. (2008). Soluble non-starch polysaccharide in the diet of pigs and poultry. Nutritime Electronic Journal, 5(5), 673-689.
Vangroenweghe, F. A., Poulsen, K., & Thas, O. (2021). Supplementation of a β-mannanase enzyme reduces post-weaning diarrhea and antibiotic use in piglets on an alternative diet with additional soybean meal. Porcine Health Management, 7(1), 1-12. doi: 10.1186/S40813-021-00191-5
Veum, T. L., & Odle, J. (2001). Feeding neonatal pigs. In A. J. Lewis, & L. L. Southern (Eds.), Swine nutrition (pp. 671-691). Boca Raton: CRC Press.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Glaiton Ricardo Martins, Jansller Luiz Genova , Paulo Evaristo Rupolo, Andressa Luana Gorzelanski Trenkel, Amanda Gabriela Bickel , Aline Carolina Tillmann , Angela Rocio Poveda-Parra, Silvana Teixeira Carvalho , Paulo Levi de Oliveira Carvalho, Newton Tavares Escocard de Oliveira

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.











